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Abstract
Introduction: Modelling of cost effective HIV drug is one of the major 
research area in the field of drug designing. Presently is observed that 
HIV-1 capsid assembly (CA) inhibitor drugs are mutation resistant. 
Thus, modelling of HIV drugs of this class with small organic molecules 
is the prime focus of present research work.  

Methodology: It is very important that before experiments, in-silico 
drug test not only reduce the cost of experiments but also the time. Thus, 
in-silico drug tests are performed with our modelled compounds using 
molecular docking method.

Results: We found that our compounds, p-di-pyrrole benzene and its 
derivatives, show HIV-1 CA inhibitor activity in the micro-molecular 
level. We also computed and reported the LogP, charged surface area 
and binding properties of our compounds with the HIV-1 CA protein in 
the present article.

Conclusion: From our present study we may conclude that small 
organic molecules like p-di-pyrrole benzene and its derivatives are very 
good HIV-1 CA inhibitors. Thus, these compounds may be promoted for 
in-vivo and clinical tests.

Keywords:  HVI-1 CA inhibitors, Molecular docking, QCM, P-di-pyrrole 
benzene.

Background
In very recent years, in-silico drug designing research area has grown 

in a rapid pace. It reduces the time and cost of drug designing by eliminating 
the unsuccessful trials. Several methods and computational packages are 
developed so far, for in-silico drug designing e.g., Quantitative Structure 
Activity Relationship (QSAR) method [1-5], molecular docking methods 
[6-9], Quantum computational methods (QCM) [10-16], molecular 
dynamic study [17-20], etc. Among all these methods QSAR based 
methods are most popular and wildly used for in-silico drug designing 
in the academic laboratories as well as in the industrial branches. On the 
other hand, molecular docking based methods and QCM are mostly used 
in academic laboratories. QCM is developing. Though, these methods are 
very accurate and required minimal data, we are unable to use these 
methods because there is no freely available web based packages. We 
used molecular docking methods for our calculations with the help of 
DOCKING SERVER [21] which is freely available in the web. 

HIV is one of the epic diseases till at the beginning of the third decade 
of twenty first century when science and technology have developed 
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almost in all respect, automation is not only implemented 
in the computations but also in all areas of our daily life, 
robotics is extended to design human robot which is 
indistinguishable from an alive human. The dynasty of HIV 
is rapidly increasing rather decreasing. This is due to the 
anecdotal mutation capacity of HIV viral protein against any 
drug. Not only that, there are cross drug resistance which also 
rapidly developed by HIV virus when proper combination of 
drugs are not used for treatment. As a result, a major part of 
present research is focused on HIV drug discovery [22-30].      

Presently, it is reported that HIV-1 Capsid Assembly (CA) 
protein which plays an important role in the recombination 
process of small genomes to form a cone shaped viral capsid 
has no capacity of drug resistant against any drug [31]. This 
is probably due to the energy minimal configuration and 
combination of amino acids at all three binding sites of CA 
protein of HIV. The mutation at any binding site is not related 
to decrease in inhibition capacity irrespective of the nature 
and size of the inhibitor. At the same time the viral fitness 
also decreases due to any kind of mutation. Thus, designing 
of HIV-1 CA inhibitor drugs would be a great idea for fight 
against HIV. In the present research work we have focused 
on it. Cost effectiveness of preparation and production of the 
proposed drug is another important issue. Thus, we planned 
to design small common organic compounds following a 
recent work by Bishwas et. al. [32].

Methods
We used Docking Server [21] for our calculation 

regarding the evaluation of binding constant of the modelled 
compounds with the HIV-1 CA protein. For these calculations 
we have taken HIV-1 CA protein structure from protein data 

bank which has the PDB ID as 1e6j. Auto Dock tool is used for 
docking. Standard docking parameters are used which are 
same as reported in reference 32. Gasteiger partial charge is 
added to all ligand compounds. 

Results and Discussion
Simulated results are presented in table-1. It is observed 

that compound-1 and compound-2 have almost equal 
binding capacities as well as the binding frequencies. 
But, compound-3 has better binding frequency though its 
binding constant is higher compared to compound-1 and 
compound-2. It is known that lesser the binding constant 
higher is its inhibition capacity. Thus, compound-1 and 2 
are the better inhibitors. On the other hand, high binding 
frequency means real chance of binding of the inhibitor is 
higher. Thus, compound-3 also could be a good inhibitor. 
Binding constant of compound-4 is higher than compound-1 
and compound-2, but, less than compound-3. Its binding 
frequency is very less, only 10%. Thus, it may not be as 
effective as other three compounds. Still, it is also a candidate 
for the HIV-1 CA inhibitor. All four compounds have the 
binding constants in the micro molar range. Thus, we could 
promote these compounds for further studies. 

The docked structures of four inhibitors reported here 
are presented in figure 1 (for compound 1), figure 3 (for 
compound 2), figure 4 (for compound 3) and figure 5 (for 
compound 4). Compound-1 fitted perfectly within the 
binding pocket of the viral protein and binds to both sides of 
the loop which is the most desirable. Contrary to this, all other 
three inhibitors bind to any one side of the loop. Thus, after 
the inhibitor binding, there is still a small chance of assemble 
activity of this protein. In this regard, we may conclude that 

Compounds Binding Constant (Ki) Binding frequency H-bonding amino acids

Compound-1 18.09 Micro mole 30% LEU116, THR117,
GLU155, ALA175

Compound-2 17.8 Micro mole 30% GLU155, ALA175

Compound-3 62.59 Micro mole 40% GLU155, ALA175

Compound-4 34.22 Micro mole 10% GLU155, ALA175

Table 1:  Computed binding constants of different compounds with HIV-1 CA protein.

 
Figure 1: Docked Structure of Compound-1.
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Figure 2: Interaction plot of compound-1.

Figure 3: Docked structure of compound-2.

Figure 4: Docked structure of compound-3.
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Figure 5: Docked structure of compound-4.
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Figure-6: Interaction plot of compound-2.

compound-1 is the best inhibitor among these modelled 
compounds. There is another important observation. It 
is observed that in all cases, the key binding residues of 
CA protein are almost same. The binding residues and the 
nature of bindings are presented in figure 2 (for compound 
1), figure 6 (for compound 2), figure 7 (for compound 3) and 
figure 8 (for compound 4). In these presentations, hydrogen 
bonding, vander Waals interactions and hydrophobic 
interactions are shown. From the interaction studies we 
found that all four compounds form hydrogen bonding with 
the 155 and 175 residues of CA protein which are Alanine and 

Glutamine, respectively. Additional interaction is observed 
for compound-1 which has interaction with Leucine and 
Threonine, two consecutive protein residues 116 and 117. It 
is also observed that all these compounds bind to the same 
binding site of the protein. Thus, their binding nature and 
effect would be the same.

Conclusion
From the present study we may conclude that four small 

organic compounds which are tested for HIV-1 CA inhibition 
activities are excellent findings for designing of HIV drugs 
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Figure 7: Interaction plot of compound-3.
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Figure 8: Interaction plot of compound-4.
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as they have binding constant at the micro molar level and 
they are common organic compounds. Further experimental 
studies are required before pre-clinical tests. But, these 
compounds would definitely be cost effective drugs. 
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