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Algorithm for Exact Solution of Thick Anisotropic Plates
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Abstract

Total potential energy was formed based on the traditional refined
plate theory assumptions. Displacement field, kinematic relations,
constitutive relations, stress displacement relations were derived from
the deformed section of a thick anisotropic plate respectively. Strain
energy was formed by substituting the kinematic relations and stress-
displacement relations into the universal strain energy equation. By
the addition of the external work to the strain energy equation, total
potential energy functional for analysis of thick anisotropic rectangular
plate was obtained. The total potential energy functional were minimized
by differentiating it with respect to the deflection, shear deformation
rotation in x direction and shear deformation rotation in y direction
respectively. This yielded the governing equation and two compatibility
equations ofthick anisotropicrectangular plate. A third order polynomial
shear deformation function was derived from shear stress across the
thickness of a rectangular plate section. The third order polynomial
shear deformation function was employed to the governing equation and
compatibility equation to obtain the displacement function (deflection,
shear deformation rotation in x direction and shear deformation rotation
in y direction). The general displacement functions obtained were used
to satisfy the specified boundary conditions which gave the unique
displacement functions for the various plate, (ssss), (cccc), (ccss), (cscs),
(cccs), (csss), (ssfs), (ccfc), (csfs), (scfs), (scfc), (ccfs) respectivelyssss.
Stiffness coefficients for various plate with their unique displacement
functions were calculated. Minimizing total potential energy functional
with respect to the coefficients of the displacement functions gave the
formula for calculating the coefficients of the displacements and other
formulas to calculate the displacements and stresses of the anisotropic
thick plate. These formulas derived herein were used to analyze typical
anisotropic rectangular thick plates. The numerical results obtained
for displacements (w) were in good agreement with previous work by
other scholars.

Keywords: Total potential energy, Materials, Composite structural
elements, Anisotropic plates.

Introduction

Technological progress is associated with continuous improvement
of existing material properties and this has led to the expansion of
structural material classes and types. Usually new materials emerge due
to the need to improve structural efficiency and performance. These new
materials in turn provide opportunities to develop outdated structures
and technologies, and also create new problems and tasks to engineers
and material scientists. One of the best manifestations of these related
processes is the development of the composite structural elements
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which are associated with the anisotropic structural plate,
to which this study is devoted.

Composite materials emerged in the middle of the
twentieth century as a promising class of engineering
materials providing new prospects for modern technology.
Broadly speaking, any material consisting of two or
more components with different properties and distinct
boundaries between the components can be referred to as a
composite material [1].

The sudden increase in the use of anisotropic or
composite materials in many types of engineering structures
(e.g., high rise structures, aerospace, underwater structures,
automotive, electronic circuit board, medical prosthetic
devices and sports equipment) and the number of journals
and research papers published in the last two decades attest
to the fact that there has been a major effort to develop
composite material systems, and to analyze and design
structural components made from composite materials [2].
The production of anisotropic material involves chemists,
electrical engineers, chemical engineers, material scientists,
mechanical engineers and structural engineers. Structural
engineer deals mainly with the analysis and design of these
anisotropic materials.

Anisotropic plates are plates with different resistance to
mechanical actions in different directions. This implies that
anisotropic plates are directionally dependent as opposed
to isotropic plates that implies identical properties in all
directions. Examples of such plates are aviation plywood,
delta wood, coated aluminum plate, alloyed metal plates and
a number of other materials [3].

A plate is a structural member that is bounded by two
flat surfaces, which are separated by thickness (t) [4]. Plates
are widely used in many engineering applications and
specifically in aeronautic, electronic, marine, mechanical
and civil engineering for the construction of aircraft, circuit
board, ships, bridges, vehicles, satellites, platforms, building
floors and roofs, shear walls, computer hard-disk drives
and other complex structures [5-7]. The x-axis and y-axis
are the in-plane axes while the z- axis is the out of plane
axis. The thickness (t) is small compared with the in-plane
surface dimensions ‘a’ and ‘b’ [8]. The thickness is usually
constant but may be variable and is measured normal to
the middle surface of the plate. When the plate thickness is
divided equally by a plane parallel to its surface, this plane
is referred to as middle surface [9,10]. A plate is regarded as
thick plate when the span-depth ratio is less than or equal
to 10 (a < 10) while the plate will be idealized to be thin
when the span-depth ratio varies between 10 and 100 (10 <
a < 100) [11]. However, it has become common knowledge
that the true range of span-depth ratio for thin plate is
between 50 and 100 (50 < a < 100). The range between 10
and 50 can be classified as moderately thick plates while the
range of span-depth ratio exceeding 100 is used to classify
membrane plates [4]. Thin plates are analyzed based on
classical plate theory, while thick plates are analyzed based
on refined plate theories [4,12-16]. Both the analysis of
thick plate and thin plate had for long been based on the
trigonometric displacement functions until recently when

Ibearugbulem et al. [17] and Ibearugbulem [18] popularized
the use of orthogonal polynomial functions in plate analysis.
Hence, this work shall base it analysis of plate on orthogonal
polynomial functions.

The classical plate theory assumed that the plane cross
sections that are initially normal to the plate’s mid-surface
before deformation remain plane and normal to the mid-
surface after deformation. This is because the transverse
shear strainswere neglected. However, significant transverse
shear strains occur in thick and moderately thick plates.
Hence, the theory gives inaccurate results for the plates.
Therefore, the shear strains have to be taken into account.
One of the numerous theories of plates that include the
transverse shear strains is the Reissner and Mindlin theory,
known as the first-order shear deformation theory, which
defines the displacement field as linear variations of mid-
plane displacements. This theory, in which the relationship
between the resultant shear forces and the shear strains
is obtained by using shear correction factors, has some
advantages due to its simplicity and low computational cost.
Some other plate theories, namely the higher-order shear
deformation theories, include the effect of transverse shear
strains. The static or dynamic loads carried by plates are
predominantly perpendicular to the plate faces. The load-
carrying action of a plate is similar, to that of beams or cables
to a certain extent; thus, plates can be approximated by a
gridwork of an infinite number of beams or by a network
of an infinite number of cables, depending on the flexural
rigidity of the structures [11].

Works on refined plate theory have been characterized
by the use of trigonometric displacement function. Many
scholars have obtained the closed form solutions and
others have obtained approximate solution using assumed
displacement functions in energy method. However, one
thing that is common in them all is the use of trigonometric
displacement functions to approximate the deformed shapes
of the plates [12,13,19-29]. Others have applied the assumed
polynomial displacement functions in numerical methods
like finite element method and differential quadrature
element methods [30-37]. The major flaw in their traditional
refined plate theory (Third order or higher order shear
deformation theory) is the assumption of their displacement
functions in their thick anisotropic plate analysis. These
assumptions has never been solved to ascertain its validity
or correctness in thick anisotropic plate analysis.

Methodology

Formulation of total potential energy functional of
anisotropic thick rectangular plate

Assumptions: This work shall be based on the traditional
refined plate theory assumptions as stated below:

a) The displacements, u, vand w are small when compared
with plate thickness.

b) The in-plane displacements, u and v are differentiable
in x, y and z axes, while the out-of-plane displacement
(deflection), w is only differentiable in x and y axes. This
means that the first derivative of w with respect to z is
zero. Consequently, the vertical strain, £ =0.
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¢) The effect of the out-of-plane normal stress on the gross
response of the plate is small when compared with other
stresses. Thus, it can be neglected. That is, 6, =0.

d) The vertical line that is initially normal to the middle
surface of the plate before bending is no longer straight
nor normal to the middle surface after bending. The line
is now parabolic. That is, ¢ # 6. where @ is the total
rotation of the middle surface in this case and 6_is the
classical plate theorem rotation of the middle surface.

Here effort shall be made to formulate the direct
governing equation for an anisotropic thick plate under pure
bending. In doing so Figure 1, Figure 1a and Figure 1b shall
be relied upon.

Displacement field: The refined plate theory (RPT) in-
plane displacements, u and v are defined mathematically
from Figure 1 as presented:

u=u,+u, (1)
vV=v +V (2)

Where uand v are the in-plane displacement in x direction
y direction respectively, and the out of plane displacement
(deflection) is taken as “w”

w”.
Where;

CPT: Classical Plate Theory

: Total rotation of the middle surface

6..and@,: Classical plate theorem rotation of the
middle surface.

ngand@y : Angle between the CPT deformation line
and the shear deformation line.

u_ and v, : In-plane displacement due to classical plate
theory.

u_and v : In-plane displacement due to shear deformation
theory.

irface

In fiber
Defprmation

line

CPT Deformation
line
Top fiber

/

CPT Deformation
line

Section A-A

The classical part of the in-plane displacements u_and v,
are defined as follows:

u,=—z60_= —zd—w (3)
dx

v, =-z0, = _Zd_w (4)
Y dy

Analogously, the shear deformation part of the in-plane
displacements u_and v_are defined as:

u, =F(z)0, (5)

v, =F(2)0, (6)

Where; 0, = ¢, = shear rotation in x - direction

0,, = ¢,= shear rotation iny - direction

F (z) is used in Equations (5) and (6) instead of z due to
the fourth assumption in section 3.1.1 (Figure 1).

Substituting equations (3) to (6) into equations (1) and
(2), we obtain;

Ue-zM, F@2)4, (7)
ox |

ve-zMiFo)g 8)
oy A

Having stated the in-plane displacement functions, the
work will proceed to kinematic relations.

Strain-displacementrelations (kinematic relations): The
strain-displacement relations suitable for small deflection of
thick anisotropic rectangular plates will be considered. From
the second assumption in section 3.1.1, the vertical strain €,
is equal to zero. Thus, the remaining five engineering strain
components are derived differentiating equation (7) and (8)
with respect to x and y appropriately;

Lrface

In fiber
Defprmation

line

CPT Deformation
line
Top fiber

J

CPT Deformation
line

SectionB-B

Figure 1(a & b): Deformation of a section of a thick plate.
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du af2

e =" +F(z )d¢x 9)
dx ctx
dv ciqﬁy
T (z ) (10)
2
y =AY R )‘M’“ L
ody de dxdy dy dxdy
2 (1)
FR Y R )‘W 1 F(z )d¢y
dx dxdy dy
_@_'_dw dw+dF(z)¢
Yz dz dx dx dz 7 (12)
_F_civv _ dF(z) &,
dx dz
dv dw dw dF(z)
S
34 34 (13)
N dw _ dF(z) p
dy dz 7
Constitutive relations (Stress-Strain Relations): The

work shall apply Hook and Poisson’s theorems to obtain the
stress - strain relations. It shall also make use of only five
stress components (o, 0, T, T, and ‘ryz) and corresponding
five strain components (‘ryz, € Yy Vew and Y, as given;

& = 9 _n% (14)
El E2
£ _Vo, o, (15)
E] E2
z-12
Y2 = G (16)
12
T3
3= o (17)
13
T
m—gi (18)
23
tee LB _p (19)
nov

Thus, equation (14) and (15) can be rewritten as;

O O
g = 919
E E,
(o3 O,
& = L 472
E, E,
. . . E12 .
Multiplying equation (21) by ? gives
1
82E12 _ O-1E12 O-2E12 - _ o 4227 O'2E
E, EE, EE, E EE,
Adding equations (20) and equations (22) gives;
& E o, o, O,E o
& 422712 71 71 T2 T2
El El El E1E2 E12
&E E 1
81 +A: 0-2 |:i__:|
El EIEZ E12
Substituting equation (19) into equation
appropriately gives;
&, 1 1
5y =%\ Ve, E
1 12 12
& O
2 2
“ ?;VEE[IZK@]
1 1212
eVEE, +&EE, =0, [Elz - VlEz]
Substituting equation (19) into equation
appropriately gives;

E E E
eV E, 711"' &E, 711 =0, {7:_ V1E2j|

=0, |:%_V1E2:|
2

E
EE, {gl +%}:h[l—VlV2]
1

2

% 1-vp)

E, gl+i =
Wi "
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E
Slaive]=21-v0]

1 2
=k, [51V1 + ‘92]
E.V
Gzzﬁ_i_[l/lgl—i_gz] (28)
Similarly;
E.V
o =W+[a +156,] (29)

Expanding equation (28) and equation (29) gives
respectively

E12I/181 E12I/282
o, = + (30)
I AANISAA
ElZI/lgl Elelegz
o, = + (31)
SR AA NI AA

Also, from equations (16), (17) and equation (18) we
have;

7, =Gy, (32)
T3 = G375 (33)
T3 =GyYss (34)

Casting equations (30), (31), (32), (33) and (34) into
matrix form gives;

CEJV, EV, 000 0]
o | |-, 1T, & ]
0, EVV, ENV, 0 0 0 1 ¢
T, |=| 1=, 1=-WD, 712 | (35)
Ti3 0 0 G12 0 0 713
| 703 | 0 0 0 Gy 0 |[ry)]
. 0 0 0 0 Gy

From equation (35) we obtained equation (36) as given;

O-l Al 1
0, 4,
7, |=| 0
Ty 0
7] | O

4, 0

4, 0
0 A,
0 O
0 O

0
0
0
A

4

0

0
0
, 0
A

55

7ip | (36)

V23 ]

Where;
E.V E.VV.
Ay =—— 4, =" 2= 4,4,
-V, -V,
E.V.
:ﬁ;An =G4, =G5 455 =Gy,
172

Equation (36) can be put in short form as:

[o.]=[4][7:] (37)
The X-Y planer form of equation (37) is:

[%] = [B]D’xy] (38)
Where;

[B]=[T]""[4][T] (39)

Equation (39) is the transformational matrix equation

Where;

M* n —2Mn 0 0]
n> M’ 2Mn 0 O
T=|Mn -Mn (M>-n*) 0 0 |40
0 0 0 M —n
0 0 0 n M|
‘M? n2 2Mn 0 0]
n M? 2Mn 0
[TT'=|Mn —Mn (M*-n*) 0 0| (41)
0 0 0 M -n
| 0 0 0 n M|
Eyv, E,vv, 0 0 0 ]
l-vyv, 1-vy,

E,vyv, E,v 0O 0 O
A=|1-vyv, 1-vy, (42)
0 0 G, 0 O
0 0 0 G, O
0 0 0 n Gy

Substituting equation (40), (41) and (42) into equation

Sch J Appl Sci Res 2019
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(39) gives:
_Bn B, B; 0 0 |
B, B, By 0 0
[B]=|B, By, By; 0 0 (43)
0 0 0 B, B,
0 0 0 B, Bg]
Where;

B, =M*4,+M’n*(24,+24,,)+ A,n"
By, = Mn* (4, + 4y, =24,) + A, (n* + M*)

B, = 21\43’7(1411 -4, - 4;)
+2Mn’ (A, — Ay, + Ay3)

B, =M’n*(A4,+ A, —24,,)
+4,(n* +M*) = B,

B, =nA, +2M°n* (A, + A,)+ A,M"*

B,; = 2’73*/\1(1411 -4, - 4;;)
+2nM> (A, — Ay, + 4,,)

B, = M3n(A11 - AIZ - A33)

B
+Mn’ (A, — A, + 4,,) = f

B, =n’M (4, — A4, — A;)

+nM> (A, — Ay, + Ay) = %

By, =2M°n* (A4, - 24, + Ay, — As;)
+A,,(n* + M*?)

B,,=M?*4,, + An’

B,s = MnA,, — Mnd; = Mn(A,,— Ag;) = By,

By, = Mnd,, — MnA;; = Mn(A - Ass) =By
By =n"A, + A M’

M =cos 0; n=sin 0

Where 6 is the angle of inclination of the plate fibers on
the x axis.

Strain energy U. To obtain the strain energy equation for
thick anisotropic plate analysis, the work shall proceed by
substituting the kinematic relations and stress- displacement
relations into the universal strain energy equation given as;

1
U= EI 1. o.edz]dxdy

1 a
_ EIX fy[fz (0.6, +0,8, (432)

T,V t T2V, T 7,27, )dz)dxdy

External work, V: For the proposed study, the external
work V due to the uniformly distributed normal (lateral)

“«, n

load “q” is given as;

V=—ql [ (w)oxoy

Stress-Displacement relations: Kinematic equations shall
be substituted into the constitutive equations to obtain the
stress - displacement relations as shown;

(43b)

o, =B + Blzgy + B137xy (44)
o,=By¢& +Bye, +Byy,, (45)
T, = B, e + B325y + B337/xy (46)
T, =Buy.+Bs7, (47)
T, =Byy.+Bs7, (48)
o.&, =B .. +B,¢.¢, .
+B137xy‘9x

o, =B, +Bye ¢, -

+BZ37/xygy
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Txy}/xy = B3lgx7/xy +B328y7/xy 51) 7/ _4Z ( ) — W dd¢ )
+B337/xy}/xy ¢ ¢ ¢
—4ZF(Z)( )( y) +2F(Z) ( )( y) (60)
szj/xz = 447/x27/xy + B457/y27xz (52) ¢
d
+F<Z>2<dﬂ) + Ry
Tyz?/yz = 547/xz}/yz +B557yz}/xz (53) 4
s _(F@)Y -
B, =D,,B,=D,,B;=D,;, = dz ¥
Let B, =D,,By, =D,, (54) JF(2)
By, = Dy, By = Dy, Vil e —( j 9.9, (62)
B, = D;,andBy; = D;,
2
s o dPw d w. de, » _(dF () &’ (63)
&’ =23y - y e
dx’ dx (55) Z
+F(Z)2 (%)2 Substituting equations (55) to (63) into equations (49)
dx to (54) appropriately and then substituting the resultant
equations into the total potential energy equation of (64)
2 ¢ yielded equation (65) which is the total potential energy
g, 6‘ =7’ ( ) — for a thick anisotropic plate of traditional third order shear
(56) deformation theory.
dzw d¢ ¢ ¢ Total potential energy: The external work due to the
—ZF(Z )( )( x) F(Z) ( )( ) uniform distributed normal (lateral) load shall be added
to the obtained strain energy equation to obtain the total
potential energy functional for rectangular thick anisotropic
d w d*w d ¢ plate analysis as shown;
=27? ZF(Z =
gxyxy x2 ( ) ) II=U+V (643)
¢ dzw d¢
t
dy)( —) 7) —fl N {03 +0,6,+7,7,, +]
2 42 e TXZ Xz 'z z 64b
+F(Z) d¢ b | p(zy 20 9 Ve 7,27, | (64b)
dxdy dx ~ dx —q E) E} wdxdy
2 2
(d ¢ d*w g d*w
v’ (58) |- dx’ ? dx2
¢ IT= _-f 0 J o[ Dy
+F(Z) ( ) 2 d¢ d¢
+&;
d’w d’w *w_ de. dx dx
&7y =22° i dxdy dy o) 2
. df d2 a’¢ d*w g d*w dag.
—ZF(Z)( vzv ) —=  (59) dxdy *dxdy )\ dy
dy” dy +D,, , d9 i 2
d2¢ , dg, ¢ I AN e L
+F(2)’ ( y) F(2y de  dx & dxdy )\ dx & dy dx
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+D

d*w d*w

dx’ .cixcfv-_

B d*w
131 &> I

dx

d@j+g

d*w f{f&;
3&[ﬂ{K@J

|

+D,,

+D,, <

+D,,

+D;, 1

+D,,

dg. 49,

+ .
& dx dx

d¢. dp.
Pdx dy

+D,,1—4g,

d*w

d’w ’
4 —-4g,
dxdy dxdy

d’w %
& dxdy )\ dx

|

2
de. d¢
+g3(d);J +g3[dxy

2
j +2

dw ) _ d*w g,
dxdy & dxdy )\ dy

()
—_ +g3 | —
dxdy )\ dx dy dx

d*w
e (Wj[

+ .
&3 dy dy

o [ 4 ),
& dx’? dx

+g

-3 d’w (9, +
oL dy2 dx &

+8

dg,
dx

ag. 49, 49, 4,
dy dx

d*w
3 «ae v

d*w d*w

x> dxdy

> dx

d¢x d¢y
> dx T odx
d’w d’w dz_w do.
=l \a

dy* dxdy -

Ydy dy
a9, d¢,
>dy dx

a9,

¢, 49,

de,
dy
a9,
s

+a2g4D44¢x2 + a2g4D45¢x¢y

dy

:

& dy dx

dg, 49,

+a2g4D45¢x¢y + 0‘2g4D55¢y2 ldxdy

~q [ I waxdy

Where:

The flexural rigidity of the plate is:

_E Er’
1=’ 12(1-p)

The span-depth ratio is defined as:

D * D =

a
o =—

t
Also:

D, =D,;;D;, =0.5D,; D;,
=0.5Dy,; D5 = Ds,

Sch J Appl Sci Res 2019
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Substituting equation (72) into equation (65) gives:

H:lﬂ)ﬂ)[Dn )
i CIC)
dx & dx
(2j-(22) )
2D, dxdy ? dxdy )\ dy
o [ dw)(dh),  (de,)(de,

&2 dxdy )\ dx &2 dy )\ ax

d*w d’w d*w\( dg,
22— -8, — | =
dy” dxdy dy dy

+1.5D,,
Pw\(d4,)  dg, d,  dg, do,
-] e all el R - i Sy
dy dx dy dy dy dx
Pwl [
dyZ g2 dyl
+D,, 5
), [
3 dy
2d2w dzw_ d*w dag,
LsD dy* " dxdy &2 dy* )\ dy
DDy, d*w)( dg, dg. dg, d¢, dg,
—3g2 3 +g3 X, +g3 —.
dy dx dy dy dy dx

4{;12w] _4g2[dzw][d@j_“gz(dzw](d(@)

xdy dxdy )\ dy dxdy )\ dx
: dg. ? dg.

+g3[—czxj +g3( dq)ﬁ:] +2 a9, _¢)

& dy " dx
+a2g4D44¢x2 + 2a2g4D45¢x¢y
+o’g,Dysd, Ndxdy — q I} I wdxdy

33

(73)

Formulation of the polynomial shear deformation
function, F (z)

This is a function that describes the shape of the normal
to the mid-plane after deformation has taken place. In this
thesis, a third order polynomial function will be employed
to carry out a pure bending analysis of thick anisotropic
rectangular plate of the various boundary conditions. The

function is giv rlas:4 - 2
)=z|l-——| —
oo

(73a)

The function of equation (73a) can be derived from Shear
stress across the thickness of a section of rectangular plates
of Figure 1.

The maximum vertical shear stress equation across a
rectangular section is given as:

Tmax = Q
1b

Also, the first moment of area of a rectangular section is
given as

o2 45

Second moment of area of a rectangular section is
commonly known as:

2
;b
12
Therefore;

Vo
= G(2)=G(2)

Where the vertical shear stress profile G(Z) is given as;

G(2) %(1—4?—;)

From the above equations, nominal shear stress is given
as;

4
T=—
bt

For traditional refined plate theory, it is assumed that
the shear stress profile G(Z) is related to shear deformation
profile, F(Z) as shown;

dF (Z)

CD==0

Integrating G(Z) in the above equation with respect to Z
gives the shear deformation parabolic profile as shown;

3 4Tz 7T
F(Z)—EZ(I—E[?} ]

Ignoring the multiplier (1.5) we obtain cubic function
shear deformation profile given as;

Ha:z@_gﬁTJ

Note that previous studies has shown that both functions,
multiplier (1.5) or when ignored shall give the same result
in thick plate analysis. Also, this shear deformation function
was used by Murthy [28] in his work that was titled “Towards
a consistent beam theory”. Sayyad [20] discussed other
shear deformation profile equations used by other scholars.
However, only the profile equation (73a) which was also
used by Krishna Murty shall be used.

Sch J Appl Sci Res 2019
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Governing equation and compatibility equations

To obtain the equations of equilibrium of forces, the
total potential energy functional shall be minimized by
differentiating it with respect to the deflection, shear
deformation rotation in x direction and shear deformation
rotation in y direction (w, 6_ and Gsy) respectively as
shown and these will yield the governing equation and two
compatibility equations.

dH dll dH
dw dg,  dg,

dll a‘w  d’g,
Wzﬂ)fi)[Dn{W_gzﬁ +D;,42

(74)

d'w_ dg, d’g,
axay S axay S axidy

Jr0.75D13 {4d43VV3g d3¢Y g, d ¢;}+D22 {dI;ng d¢;‘}
dx’dy dx’dy dx dy dy
+0.75D. d i ¢, a9, + W &9,
R e T R A P T
=1y i gdxdy =0
That is:
a‘w d?
[ j[{ IV D, +2D,)- 2 i +D,, va}
d‘w d*w
+{3D13 dX3dy +3D,, dxdy3}
d? d’
_gzDH d¢3 gz(Dl2+2D33) ¢
d’g, d’g,
-g,(D,+2D,)—2*-g,D,, —=
g, (D, + 33)dx2dy & Vn dy3
a4, d’g,
+ 225800 G0 0738 T
d3¢x d3¢’
-0.75g,D,, W —-2.25g,D,, dx—;z
—qldxdy =0
That is:
dll d*w d*w d*w
PRI LR
d*¢. d’¢
-g,D;, W - 8,0y, dyzy
d’ d* d’
A 3.9V 5056, L0
dxdy dx’dy ? dx’dy
—&,D; 13 3
a 9 -0.75 79,
dxzdy s ax’

4 3
390754, 4 0
dxdy dy
+D,, 0, —qldxdy =0 (75)
-225g,—
dxdy’

whereD, = D,, +2D;,
dlIl d’w d’¢,
d¢ -[1 Il[Dll{_gz(dx3]+g3 A
3 d’
+D;, 18, d_W2 T8 ¢
dxdy > dxdy

d*w d*¢ d’g,
+0.75D,,<-3 +2 x4 4
B { L dxzdy & dxdy & dx?

d’ d’g,
+O.75D23{dyw+g3 & }
d*w d’ d’¢
+D;;1-2g, > +t8; ¢2x +8; -
dxdy dy dxdy (76)
+a’g,D,@, + a2g4D45¢y]dxdy =0
dll d3w d
—— = \[D,{-g,— 2.
dg, dx dy dxdy
d*w d’¢,
+0.75D13 {—gz ﬁ-i_ g3 —dx2
d*w d’g,
+D,, {_gz ?"' &3 F}
d*w d*¢ d’¢
+0.75D,.4 -3 + x40 .
23{ Sy SR S dndy
d’w d*¢ )
+D 2 + L !
33 gz 2 g3 de g3 dxdy

+a2g4D45¢x + a2g4D55¢y dxdy

Determination of displacement functions and
tiffness coefficients

The governing equation and two compatibility equations,
which are in form of partial differential equations shall be
solved to obtain the displacement function (deflection, shear
deformation rotation in x direction and shear deformation
rotation is y direction). The general displacement functions
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obtained shall be used to satisfy the specified boundary
conditions to obtain the unique displacement functions for
the various plates set aside to be analyzed herein. With the
unique displacement functions for the various plates, the
stiffness coefficients shall be calculated.

From equations (75), (76) and (77) we obtain:

:[hx][Axl]x[hy][Aly]:Alh (78)
dh. dh
@, { IR }[sz]x[hy][Ay 1=A, vy 9

9,

dhy ~ ﬂ
[h ]J[A ;1% {dg}[Ayz]—Ag 70 (80)

Direct variation of total potential energy
Equations (78), (79) and (80) gave:

W =Ah (81)
dh

=4, — (82)
¢x 2 dR

¢ = A3ﬁ (83)
y dQ

Substituting equations (81), (82) and (83) into equation
(73) and simplifying gives;

p
= 2_612[D11 {A12 —2g,4,4, +g3A22}k1

2:2D..+ D
+ { = 12} {Alz - 8,44, +%g2A2A3}k2

2

p

+#{D33 {g3A22 + g3A32} + Dy, {g3A2A3}} k,

+%{A12—2g2A1A3+g3A32}k3
+1.5& 2A12—3g2A1A2—g2A1A3 k,

P |+g:4,4+ g3A22

+1.5&{2A12 - 8,44, —3g2A1A3}k5

p3 +8,4,4; + g3A32

+a’g,D, Ak, +2a’g, Dys A, Ak,
p (84)

D
+a’g, == Ak, — qa’ pAk,

p
The formulas for determining the displacements
and stresses

To obtain the quasi equations of equilibrium of forces,
the total potential energy functional which is equation (84)
shall be minimized with respect to the coefficients of the
displacement functions to obtain the formula for calculating
the coefficients of the displacements as shown. It shall
further obtain other formulas to calculate the displacements
and stresses of the anisotropic thick plate.

That is:
aTl_dTl_dTl_,

=——=—= (85)
dAl dA2 dA3
an_p |70 e :
d4, 2a° +#{2Al_g2A2_g2A3} ’

p

s Pnoy 00 4k,

4

11525044 30,4, - g, 40 k,

D,,
+1.5—= . 244, —g,4,-3g,4,} k;—qa’ pk, =0

That is:

2{21)33 +D12} L D,, .
2 4 "3

p

D,k +

Al

D
+3

2

p

Jk4+3D—3

p p
{2D

5

2

D, g,k + . g,k,

2

D, D,
+2.25—" g k, +0.75— g k.
p p

242D..+D D
Lzlz}gzkz+_242g2k3
4 P p

3

D
107525 gk +225Pn ¢ 1
p p
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—qa‘k, =0 (86)

dll _ p
dA, 2 2D { 2g2A1+2g3A2}k1

2{2D,;+D,,}

1
+ P2 _{ngl +Eg3A3}k2

1
+?{D33 {2g3A2} +D, {g3A3}}k2

D
+1.5—2{3g,4, + g, 4, +2g,4, } k,

D
+1.5p—233{—<g72A1 + 8,4, } ks

D
+2a’g,D, Ak, +2a’g, f@kg =0

That is:

212D..+D

Dy g,k +2 { = 12}

_4 p .

+2. 25—g2k +0.75—" g,
p

D,
D1g3k +— g3k
p

D,
+1.5—L gk, + D,4a’ gk,
P

' D, D, D, ]
; —L ok, +—2 > 2ok, +0.75—" gk,
4| P P =0 87

+0.75 D3 gk +alg, —2 Dis ky
P p

dIl_ p 2{2D,+D,,}
d4, 2a’ P’

1
{_ngl +Eg3A3}kz

1
+_2{D33 2g3A3} +D, {gaAz} k,

—242{_2ng1 + 2g3A3} k,

+1 .5&{—&4 + 8,4}k,
p

D

+1.5=2{-3g,4, + g4, + 28, 4, } ks

D D
+2a’g, fAzk8 +2a’g, p—525A3k7 =0

That is:
2D..+ D, D
Mgzkz +—242g2k3
4 p p
‘ D, D
+0.75— gk, +2.25—2 g k.
p p

D

D, D,
—';g3k +— 2ok, +0. 75?g3k4

A

2

D,, D
+0.75—2 gk + o’ g, — k
p p

D,

D
A= g k, +—2 g3k,
p p

D,, D
+1.5—2 g4k, +a’g, =2 > k,]1=0
P’

Note:
i dh Y
ANE (W} dRAQ
5[
e

veif d*h d*h
1[5

} dRAQ

Sch J Appl Sci Res 2019

(83)

(89)

(90)

1)

92)



www.innovationinfo.org
k J~1J'1 d’h d’h dRAO
>odol g0? )\ drRdO
e dh
kﬁj‘o .[0 dR dRdQ)

dhY
(@J dRAQ

=5
o —_
S —_

veif dh \[ dh
ksfofo(d—R [@ RdQ

k[ [ hdrdQ

93)

94

(95)

(96)

o7

Equation (86), (87) and (88) can be written in symbolized

form as;

4
qa
L11A1 _leAz _L13A3 = D_k9

11

LzzAz - L23A3 - L12A1

L23A2 - L33A3 - L13A1
Where:

¢ + 4
332 12}k2+¢2i k3

p P

+3@k4+3¢—2§k5
P P

L, =k1+2{

{2¢33 + ¢12}

2

L, =g,k +

2.k,

+2.25 % g,k, +0.75 s g,k
p p

(98)

99)

(100)

(101)

(102)

29, + ¢
L,= Mgzkz +¢_2421g2k3
p P (103)
+0.75%g2k4 + 2-25%&"5
2 = &K T 83K
P
) (104)
+1.5fg3k4 + B0’ g kg
gk + B gy r0.75 8 g,
| p P (105)
+0.75¢—2;g3k5 +a’g, %ks
i p p i
¢ ¢
L, = %g3k2 +=5 83k
¢p P ; (106)
+5 5 gk, +a’g, ok
Dij
¢ij _ — (107)

11

Solving equations (99) and (100) simultaneously gives:

L. L.—L.L
A2 :[ 12733 13 23}141 ZTZAI (108)
L22L33 - L23L23

— ( L13L33 L12L23
3
L22L33 L23L23

Substituting equations (108) and (109) into equation (98) gives:

]Al =T 4 (109)

4
qa
L11A1 - L12TzA1 - L13T3A1 = D_k9

11
That is:
4

qa
Al (Ln —L,T, _L13T3) - D—k9

11
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Table 1: Constitutive relations.

0, E, Mo E, 0 €
1,E w,E, E, 0 &
1
T | (1_ ) 0 0 (I_IUIZIUZI)GIZ V12
iy,
T3 0 0 0 (l_luIZ/JZI)GIS 713
Ty 0 0 0 (1_ﬂ12ﬂ21)G23 V23
Table 2: Deflection table for SSSS plate with normal lateral load.
(@) (wm,,’);ixwz wlx12(1-v1v2)x100
1 0 100 0.0583292 0.698200123 0.6528 6.954675684
20 0.0651 0.77909265 0.7262 7.283482481
10 0.08558 1.026869389 0.9519 7.875763058
2 15 100 0.0439652 0.526263784
20 0.0501312 0.600070047
10 0.0692161 0.828517117
3 30 100 0.061595 0.698200123
20 0.0750841 0.89875612
10 0.1167809 1.39786782
4 45 100 0.1484477 1.776919197
20 0.1869353 2.237615724
10 0.3056757 3.658938347
5 60 100 0.3688298 4.414892487
20 0.4496022 5.381737869
10 0.6992825 8.370411082
6 75 100 0.8929939 10.68913669
20 1.0182325 12.18824275
10 1.4058743 16.82831495
7 90 100 1.4582292 17.45500307
20 1.6271776 19.47731624
10 2.1446729 25.67173471
That is: Numerical Analysis
4 k The formulas derived in section 3.5 shall be used to
— qa 9 (110) analyze typical anisotropic thick rectangular plates to obtain
! l)11 Lll — leTz — L13T3 numeric results for displacements and stresses of the plate.
Example
Substituting equation (110) into equations (108) and (109) gives: Analyze an orthotropic thick square SSSS plate with the
following information:
4 e . e . —_— . — . — —
4 qa Tzkg a1 E,=25; E=1; G,,=0.5; G,,=0.5; G,,=0.2, p,,=0.25 [38]
2 = .
— — Solution
Dll Lll leTz L13Ts
3 4 3 4
h=(R-2R +R")(QO-20 +07)
4
qa Tk, 2
NS (112) _ |1 z
Dy \ Ly, = L,T, = LT, J@=z1-717

11
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12204 96
159g3 3157g4 153/'121

E
=, =Ezﬂ12 =0.01

1

&>

Constitutive Relations (Table 1)

— 1 c
1= A

That is:
—Hip

Deflection table for SSSS plate with normal lateral load is
shown in Table 2.
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