

Volume 7: 1

Journal of Applied Microbiological Research

J Appl Microb Res 2024

Boundaries of Alfalfa Field and their Function as Refuge for Butterfly (Lepidoptera: Rhopalocera) Communities

Paola Fascinetto-Zago Sombra Patricia Rivas-Arancibia* Agustina Rosa Andrés-Hernández Natalie Olmos-Santiago David Martínez-Moreno

Department of Biological Sciences, Autonomous University of Puebla, Puebla City, Mexico

Abstract

Farmland edge plants can support high butterfly richness. Our objective was to determine if, even in farms under intensive cultivation, the diversity of plants (mostly native) in crop edges is enough to sustain a high species richness of butterfly. We characterized the vegetation on the edges of Medicago sativa farms in central Mexico and identified the species of diurnals butterflies (Rhopalocera) associated. Butterflies and plants were counted along transects at the edges of a cultivated field during 24 months. We found 2710 individuals of plants, belonging to 48 different species from 24 families; 1490 individuals of diurnal butterflies, belonging to 57 species from six families. Most than half of the plant species found were native flora of central Mexico and with ethnobotanical use. A similarity analysis test showed significant differences in floristic composition between transects. The Canonical Correspondence Analysis between butterfly species and plant families showed three groups. Six butterfly species were migratory and four mexican endemic species, most of them associated with a group formed by Amaranthaceae, Euphorbiaceae, Annonaceae Lamiaceae Apiaceae and Fabaceae families. The high diversity of plants in our agro-ecosystem plays an important role to sustain a high diversity of butterflies and could be useful as biological corridors.

Keywords: Diurnals butterflies, Farmland, Edges flora, Migratory butterflies.

Introduction

Some agroecosystems have a high diversity of insect species that take refuge in the edges of crop fields, which are formed by native vegetation or by an array of different crops [1-3]. Many studies have reported that the structure and diversity of plants associated with farmland can support a high richness of butterfly species, which are, after Hymenoptera, the second most important pollinators [1,4-9]. Also, it has showed that the diversity of Lepidoptera was higher in transitional areas, located between agricultural and protected areas, because transitional areas have more flowering plants [10-12]. Furthermore, the heterogeneity of topographic conditions, and the richness and structural complexity of

Article Information

Article Type: Research Article Article Number: JAMBR 170 Received Date: 13 March, 2024 Accepted Date: 15 May, 2024 Published Date: 22 May, 2024

*Corresponding author: Sombra Patricia Rivas-Arancibia, Department of Biological Sciences, Autonomous University of Puebla, Puebla City, C.P 72000, Mexico.

Citation: Fascinetto-Zago P, Rivas-Arancibia SP, Andrés-Hernández AR, Olmos-Santiago N et al. (2024) Boundaries of Alfalfa Field and their Function as Refuge for Butterfly (Lepidoptera: Rhopalocera) Communities. J Appl Microb Res. Vol: 7 Issu: 1 (06-15).

Copyright: © 2024 Fascinetto-Zago P et al. This is an openaccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. plant species provide many habitats, by protection for larvae and nectar for adult butterflies [1,4]. Other environmental conditions and cultivation techniques can have an influence on the abundance and diversity of Lepidoptera. Many works have shown that an increase in soil moisture and the presence of crop field edges formed by native vegetation lead to a greater abundance and diversity of butterflies [4,13-16]. Although some agricultural management systems rely on the use of chemical substances, intensive use of plough and closeness to urban areas can negatively affect the abundance and diversity of butterflies [17,18]. Another negative factor is the periodical cutting of crops, but its effect is diminished when the cutting is performed at the end of summer, when the life cycle of butterflies is complete [19-22].

The natural habitats of butterflies have been rapidly disappearing in recent years, while Alfalfa (*Medicago sativa* L.) crops occupy 32, 266, 605 ha in the world and 21.5% of the agricultural land in central Mexico [23]. Also, agricultural intensification through landscape homogenization is the main drivers of the butterflies' diversity declines [24]. Therefore, the aim of this study is to determine that, even in farms under intensive cultivation, the diversity of plants (most of them native) in crop edges is enough to sustain high species richness and give refuge to endemic and migratory butterfly species.

Materials and Methods

Study site

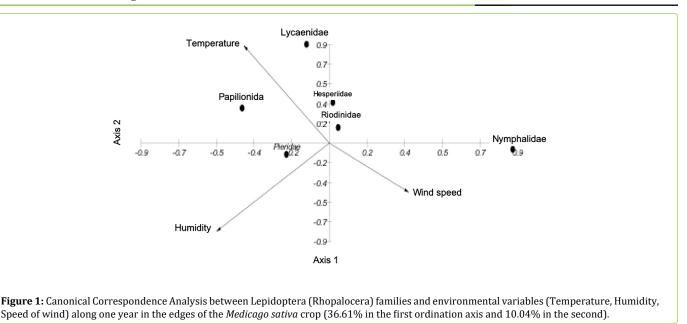
The study was carried out in a *Medicago sativa* crop located in the state of Puebla (18°52'32" N and 98°25'51" W; 1686 m.a.s.l.) in Central Mexico. The climate is mainly temperate, with summer rainfall. The annual precipitation ranges from 700 to 1000 mm and the temperature ranges from 18° to 21°C. The soils are mostly Feozems and Fluvisols, which are good for agriculture. The original vegetation was dominated by woodlands in which *Pinus* species were associated with *Abies religiosa* (Kunth) Schltdl. & Cham or *Quercus sp* [25]. Today, a high proportion of the land surface has been converted to farmland for growing corn, beans and lucerne. Small woodland areas remain in the northern and northwestern parts of the state, containing native vegetation.

Collection of butterflies and plants

Butterflies and plants were counted for five days every month, during 12 months, along four transects (300 m each one) in the edges of a cultivated field. Twenty-three Van Someren Rydon butterfly traps were set along each transect [26]. The traps were placed at 1.30 m from the ground, at 50 m from each other. We also collected butterflies manually using entomological nets. Temperature, relative humidity and wind speed were recorded using a pocket weather tracker (Kestrel 4000, Niels-Kellerman Co., Boothwyn). The butterflies were preserved in ethanol (70%). The plants surrounding each trap (an area of 1 m x 1 m) were counted, collected and dried at 35°C. Butterflies and plants were identified using taxonomic keys.

Data analysis

A Simpson index of diversity was calculated for both


plants and butterflies, and the diversity and abundance between transects was compared using a Kruskal Wallis test [27]. The similarity in the composition of plant species between transects was analyzed using a Jaccard index [28]. A similarity analysis test (ANOSIM) was used to identify significant differences in floristic composition (software PAST v.1.15) [29,30]. A species accumulation curve was obtained by the nonparametric estimator Chao 1 to determine the sampling efficiency of butterflies, using EstimateS v. 9.1.0 [31,32]. Environmental variables (temperature, relative humidity and speed of wind) were compared between transects and during 12 months using a repeated-measures ANOVA [33]. A Canonical Correspondence Analysis (CCA) was used to evaluate the effect of environmental variables on the butterfly community, and the relationship between different plant families and the butterfly species under study (software MVSP v. 3.12c) [34,35]. The results were then subjected to a correlation analysis between plant and butterfly species (software NCSS 2001) [36].

Results

Abundance and diversity

We found 2697 plant specimens belonging to 48 species and 24 families (Table 1). Most than half of the plant species found (58 %) are native flora of Central Mexico, and 91.66% of them have ethnobotanical use. The Simpson's diversity index showed no significant differences between transects, but the Jaccard index showed that the similarity in species composition was very low and the ANOSIM test showed significant differences in floristic composition (R= 0.042, p= 0.051, 9,999 permutations; α <0.10). Only 13 plant species were shared between the three transects.

We collected 1490 butterfly specimens belonging to 57 species and 6 families (Table 2). We found four Mexican endemic species Hamadryas atlantis Bates, Phyciodes pallescens Felder, Chlosyne ehrenbergii Geyer and Anthanassa sitalces Hall; six migratory species, Ascia monuste L., Smyrna blomfildia Fabricius, Eurema daira Godart, Eurema proterpia Fabricius, Vanessa atalanta Frühstorfer and Danaus plexippus L. and a species typical of woodland: Morpho polyphemus Westwood. The environmental variables were not significantly different between transects throughout the year. But the abundance and diversity of butterflies showed significant differences between months; August and September had the most abundance (H = 7.822, p = 0.0107), while February and April had the highest diversity (H = 5.92, p = 0.0034). The ACC between environmental variables and species families showed that environmental variables explained 36.61% of the variation in butterfly abundance in the first ordination axis and 10.04% in the second (Figure 1). Lycaenidae and Papilionidae were affected mostly by temperature, while Pieridae was affected by relative humidity and Nymphalidae was mostly affected by speed of wind. Sampling efficiency, as shown by a species accumulation curve was 57%. We identified three feeding guilds: nectar-feeding, mud-puddling and yeast-feeding that were present all year (Table 2).

Influence of plants on the butterfly community

The Canonical Correspondence Analysis between butterfly species and plant families showed three groups (Figure 2). Plant families explained 59.3% of the abundance of butterfly species in the first ordination axis, and 40.69% in the second ordination axis. The plant families in the first group were associated with a higher number of butterfly species (17 species) (Table 3). The correlation analysis between plant and butterfly species showed that the plant species *Salvia longistyla* Benth was correlated with more butterfly species (4) (Table 3). The butterflies that visited more species of plants were *Leptophobia aripa* (4) and *Anthanassa sitalces* (4). When applied this analysis only for migratory butterflies, we found that *A. sitalces* and *S. blomfildia* were correlated with the highest number of plant species (Table 4).

Discussion

Abundance and diversity

The results of the present study showed a similar number of plant families than other studies [37-39]. However, have been reported a greater number of species (64) than our (57) in a lucerne crop, but with larger surface during a longer period of time [40]. On the other hand, most than half of the plant species found are native flora of central Mexico, and 91.6% of them have ethnobotanical use. These results are similar to those reported by other authors [40-42]. This occurs when remnants of native flora colonize sites with adequate conditions such as the edges of crop fields; if these plants are not to remove from those sites, the diversity increase [1,3,5-7,43]. In our study, the ANOSIM test showed significant differences in floristic composition between transects. These results agree with literature, in areas with different crops, a consequence of the movement of seeds across neighboring habitats, especially when crop fields are distributed in a mosaic pattern [44-46]. In our study site, the presence of farming plots with corn, beans and lucerne crops, as well as small remaining wooded areas containing

native vegetation, could create a large-scale mosaic pattern with a high diversity of plants along the edges.

With respect to the butterfly community, the species accumulation curve showed that sampling effectiveness was low and that the collection period should be extended. In spite of this, the butterfly community found had a higher species richness (57) than other studies that sampled for longer time over a larger area (27 species, 58 species, 31 species, 61 species, 30 species) [2,5,47-49]. Also, only four of our species have been reported in other lucerne crops [48,50,51]. Our results showed that the butterfly community was sensible to environmental variables, as has been reported in other studies [52-54]. Nymphalidae was mostly affected by speed of wind, possibly because some species of this family are migratory (D. plexippus, S. blomfildia and V. atalanta). Furthermore, some authors have reported that abundance of Nymphalidae increased in conserved areas or in biological corridors [51,54]. Particularly, Anaea aidea Guérin-Méneville (Nymphalidae) present in our study, has been reported by literature as an indicator species in conserved areas; this called our attention, and because Nymphalidae was the second most abundant family in our study site, even though the agroecosystem under study was under an intense management (the crop is harvested every 28 days) [55].

Influence of plants on the butterfly community

The correlation analysis between plant and butterfly species showed that endemic plants *S. longistyla* (Lamiaceae) and *Erythrina coralloides* DC. (Fabaceae) were positively correlated with more butterfly species (Table 3) and one migratory species: *A. monuste.* While *Leptophobia aripa* was associated with more plants, this butterfly has been reported as a crop pest of *Brassica oleracea* (Brassicaceae) in central Mexico, but in our study site it was associated with other plant families [56,57]. The migratory butterfly *D. plexippus* was associated with *Alternanthera sp* Forssk (Amaranthaceae), but in literature, it was associated with the plant *Asclepias curassavica* (Apocynaceae), were it lays

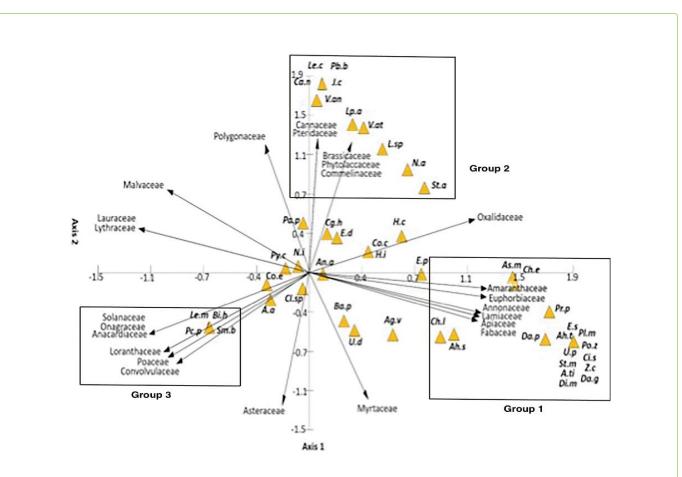


Figure 2: Canonical Correspondence analysis between butterfly and plant families (in the first ordination axis 59.30%; second ordination axis 40.69%). Butterfly species: Ag.v: Agraulis vanillae, An.a: Anaea aidea, A.a: Ancyloxypha arene, As.m: Ascia monuste, At.i: Asterocampa idyja, Ba.p: Battus philenor, Bi.h: Biblis hyperia, Cl.sp: Calephelis sp., Ca.n: Catasticta nimbice, Ch.e: Chlosyne ehrenbergii, Ch.l: Chlosyne lacinia, Ci.s: Cissia similis, Cg.h: Cogia hippalus, Co.c: Colias cesonia, Co.e: Colias eurytheme, Da.g: Danaus gilippus, Da.p: Danaus plexippus, Di.m: Dione moneta, E.d: Eurema daira, E.p: Eurema proterpia, E.s: Eurema salome, H.c: Hemiargus ceraunus, H.i: Hemiargus isola, J.c: Junonia coenia, Lp.a: Leptophobia aripa, Le.c: Leptotes cassius, Le.m: Leptotes marina, L.sp: Lerema sp., N.i: Nathalis iole, N.a: Nymphalis antiopa, Pa.p: Papilio polyxenes, Pr.p: Parides photinus, Pb.b: Phoebis boisdusvalii, Pl.m: Pholisora mejicanus, Pc.p: Phyciodes pallescens, Ah.s: Anthanassa sitalces, Ah.t: Anthanassa texana, Po.z: Poanes zabulon, Py.c: Pyrgus communis, Sm.b: Smyrna blomfildia, St.a: Strymon astiocha, St.m: Strymon melinus, U.d: Urbanus dorantes, U.p: Urbanus procnes, V.an:Vanessa anabella, V.at: Vanessa atalanta y Z.c: Ziegleria ceromia.

Taxa	Abundance	Ethnobotanical use**	
APIACEAE			
Foeniculum vulgare, Mill., 1768	3	curative and comestible	
ASTERACEAE	I		
*Aldama dentata, La Llave, 1824	19	forage	
*Bidens odorata, L.,1753	32	curative, forage and comestible	
*Galinsoga parviflora, Cav., 1796	4	forage	
*Sanvitalia procumbens, Lam., 1792	13	curative and ornament	
Taraxacum officinale, F.H.Wigg., 1780	56	curative, forage, comestible, and melliferous	
BRASSICACEAE			
*Lepidium virginicum, L., 1753	6	curative, forage and comestible	
Nasturtium officinale, W.T. Aiton, 1812	4	curative and comestible	
AMARANTHACEAE	· · · · · ·		
Alternanthera sp., Forssk, 1775	40	-	
Chenopodium album, L., 1753	4	Curative	

PHYTOLACCACEAE				
*Phytolacca americana, L., 1753	3	curative, comestible, ornament and to colour		
POLYGONACEAE				
*Persicaria hydropiperoides, (Michx.) Small, 1903	<i>ides, (Michx.) Small,</i> 1903 2 curative, forage and to colour			
Rumex conglomeratus, Murray, 1770	8	curative and comestible		
COMMELINACEAE				
*Commelina diffusa, Burm.f., 1768	60	curative, forage and ornament		
FABACEAE	·			
*Erythrina coralloides, Moc. y Sessé ex DC., 1825	1	curative, comestible, ornament and artisan		
Melilotus albus, Medik, 1786	2	forage and melliferous		
Medicago lupulina, L., 1753	31	forage and melliferous		
*Vigna luteola, (Jacq.) Benth., 1859	3	curative and comestible		
Trifolium repens, L., 1753	576	forage and comestible		
LAMIACEAE				
Leonotis nepetifolia, (L.) R.Br.,1811	56	curative, ornament and melliferous		
*Salvia mexicana, L., 1753	4	forage, comestible, ornament and melliferous		
*Salvia longistyla, Benth, 1833	93	Curative		
LAURACEAE				
*Persea americana, Mill., 1768	5	curative and comestible		
ANNONACEAE				
Annona cherimola, Mill., 1768	2	comestible and combustible		
EUPHORBIACEAE				
*Euphorbia heterophylla, L., 1753	2	curative		
Ricinus communis, L., 1753	74	curative		
MALVACEAE		·		
*Anoda cristata, (L.) Schltdl., 1837	6	curative, forage, comestible and ornament		
*Kearnemalvastrum lacteum, (Ait.)D.M.Bates, 1967	2	curative, and forage		
Malva parviflora, L., 1753	9	curative, forage and comestible		
*Sida haenkeana, C.Presl, 1835	32	-		
LYTHRACEAE				
*Cuphea angustifolia, Jacq. ex Koehne, 1877	8	curative		
MYRTACEAE				
*Psidium guajava, L., 1753	5	curative, forage, comestible, artisan, to colour and combustible		
ONAGRACEAE				
*Oenothera rosea, L'Hér. ex Ait., 1789	70	Curative and ornament		
OXALIDACEAE				
*Oxalis corniculata, L., 1753	98	curative, forage, comestible and ornament		
POACEAE				
Arundo donax, L., 1753	37	curative, forage, artisan and construction		
Bromus carinatus, Hook. & Arn., 1840	6	forage and comestible		
Chloris gayana, Kunth., 1829	1096	forage		
*Ixophorus unisetus, (J.Presl) Schltdl.,1861	44	forage		
*Setaria parviflora, (Poir.) Kerguélen, 1987	28	forage		
PTERIDACEAE				
Adiantum sp., L., 1753	10	-		
LORANTHACEAE				

www. innovationinfo. org

	1	
1	curative, forage, comestible, to colour, combustible a construction	
28	curative and ornament	
2	curative, forage and comestible	
4	curative, comestible and melliferous	
17	curative, forage, comestible, and melliferous	
3	-	
90	comestible, ornament and artisan	
2697		
	2 4 17 3 90	

Table 1: Abundance and ethnobotanical use of plant taxa found in the edges of a Medicago sativa field in central Mexico.

Taxa	Abundance	Ethnobotanical use**	
APIACEAE			
Foeniculum vulgare, Mill., 1768	3	curative and comestible	
ASTERACEAE			
*Aldama dentata, La Llave, 1824	19	forage	
*Bidens odorata, L.,1753	32	curative, forage and comestible	
*Galinsoga parviflora, Cav., 1796	4	forage	
*Sanvitalia procumbens, Lam., 1792	13	curative and ornament	
Taraxacum officinale, F.H.Wigg., 1780	56	curative, forage, comestible, and melliferous	
BRASSICACEAE			
*Lepidium virginicum, L., 1753	6	curative, forage and comestible	
Nasturtium officinale, W.T. Aiton, 1812	4	curative and comestible	
AMARANTHACEAE			
Alternanthera sp., Forssk, 1775	40	-	
Chenopodium album, L., 1753	4	Curative	
PHYTOLACCACEAE			
*Phytolacca americana, L., 1753	3	curative, comestible, ornament and to colour	
POLYGONACEAE			
*Persicaria hydropiperoides, (Michx.) Small, 1903	2	curative, forage and to colour	
Rumex conglomeratus, Murray, 1770	8	curative and comestible	
COMMELINACEAE			
*Commelina diffusa, Burm.f., 1768	60	curative, forage and ornament	
FABACEAE	· · · · ·		
*Erythrina coralloides, Moc. y Sessé ex DC., 1825	1	curative, comestible, ornament and artisan	
Melilotus albus, Medik, 1786	2	forage and melliferous	
Medicago lupulina, L., 1753	31	forage and melliferous	
*Vigna luteola, (Jacq.) Benth., 1859	3	curative and comestible	
Trifolium repens, L., 1753	576	forage and comestible	
LAMIACEAE	I		
Leonotis nepetifolia, (L.) R.Br.,1811	56	curative, ornament and melliferous	
*Salvia mexicana, L., 1753	4	forage, comestible, ornament and melliferous	

www. innovationinfo. org

www.minovacioninio.org			
*Salvia longistyla, Benth, 1833	93	Curative	
LAURACEAE			
*Persea americana, Mill., 1768	5	curative and comestible	
ANNONACEAE			
Annona cherimola, Mill., 1768	2	comestible and combustible	
EUPHORBIACEAE	I		
*Euphorbia heterophylla, L., 1753	2	curative	
Ricinus communis, L., 1753	74	curative	
MALVACEAE	l		
*Anoda cristata, (L.) Schltdl., 1837	6	curative, forage, comestible and ornament	
*Kearnemalvastrum lacteum, (Ait.)D.M.Bates, 1967	2	curative, and forage	
Malva parviflora, L., 1753	9	curative, forage and comestible	
*Sida haenkeana, C.Presl, 1835	32	-	
LYTHRACEAE			
*Cuphea angustifolia, Jacq. ex Koehne, 1877	8	curative	
MYRTACEAE			
*Psidium guajava, L., 1753	5	curative, forage, comestible, artisan, to colour and combustible	
ONAGRACEAE			
*Oenothera rosea, L'Hér. ex Ait., 1789	70	Curative and ornament	
OXALIDACEAE			
*Oxalis corniculata, L., 1753	98	curative, forage, comestible and ornament	
POACEAE			
Arundo donax, L., 1753	37	curative, forage, artisan and construction	
Bromus carinatus, Hook. & Arn., 1840	6	forage and comestible	
Chloris gayana, Kunth., 1829	1096	forage	
*Ixophorus unisetus, (J.Presl) Schltdl.,1861	44	forage	
*Setaria parviflora, (Poir.) Kerguélen, 1987	28	forage	
PTERIDACEAE			
Adiantum sp., L., 1753	10	-	
LORANTHACEAE			
*Psittacanthus calyculatus, G.Don, 1834	1	curative and artisan	
ANACARDIACEAE	I		
Schinus molle, L., 1753	1	curative, forage, comestible, to colour, combustible and construction	
CONVOLVULACEAE			
*Ipomoea purpurea, (L.) Roth., 1787	28	curative and ornament	
SOLANACEAE			
*Physalis philadelphica, Lam., 1786	2	curative, forage and comestible	
*Solanum americanum, Mill., 1768	4	curative, comestible and melliferous	
*Solanum lanceolatum, Cav., 1795	17	curative, forage, comestible, and melliferous	
Solanum sp., L., 1753	3	-	
CANNACEAE			
Canna indica, L., 1753	90	comestible, ornament and artisan	
Total			

*Species native to Mexico [62,63]. **Ethnobotanical use [60]. (-)No ethnibotanical use registered.

Table 2: Abundance and feeding guilds of the butterfly taxa (Lepidoptera: Rhopalocera) found in the edges of the Medicago sativa field.

www. innovationinfo. org

Group	Plant species	Butterfly species	р	r ²
1	Erythrina coralloides	Ascia monuste	0.0001	0.42
1	Erythrina coralloides	Anthanassa texana	0.004	0.164
1	Erythrina coralloides	Anthanassa sitalces	0.0001	0.609
1	Salvia longistyla	Ascia monuste	0.0001	0.503
1	Salvia longistyla	Anthanassa texana	0.004	0.067
1	Salvia longistyla	Anthanassa sitalces	0.0001	0.718
1	Salvia longistyla	Chlosyne lacinia	0.006	0.208
1	Melilotus albus	Anthanassa sitalces	0.014	0.066
1	Leonotis nepetifolia	Chlosyne ehrenbergii	0.019	0.032
1	Alternanthera sp.	Chlosyne ehrenbergii	0.0001	0.378
1	Alternanthera sp.	Ziegleria ceromia	0.0001	0.385
1	Melilotus albus	Anthanassa sitalces	0.014	0.066
1	Vigna luteola	Chlosyne ehrenbergii	0.0002	0.104
1	Euphorbia heterophylla	Chlosyne ehrenbergii	0.0009	0.078
1	Euphorbia heterophylla	Ziegleria ceromia	0.0003	0.104
1	Ricinus communis	Ziegleria ceromia	0.0001	0.88
2	Lepidium virginicum	Leptophobia aripa	0.0001	0.909
2	Nasturtium officinale	Leptophobia aripa	0.0001	0.039
2	Commelina diffusa	Leptophobia aripa	0.007	0.01
2	Canna indica	Leptophobia aripa	0.0001	0.049
2	Canna indica	Junonia coenia	0.0020	0.286
2	Canna indica	Vanessa anabella	0.0010	0.303
3	Chloris gayana	Biblis hyperia	0.001	0.561
3	Bromus carinatus	Smyrna blomfildia	0.003	0.201
3	Ixophorus unisetus	Smyrna blomfildia	0.003	0.194

Table 3: Correlation analysis between plant and butterfly species in the edges of the Medicago sativa crop. Groups are defined in figure 2.

Plant species	Migratory butterfly species	р	\mathbf{r}^2
Erythrina coralloides	Eurema daira	0.0009	0.231
Erythrina coralloides	Ascia monuste	0.0001	0.420
Aldama dentata	Eurema proterpia	0.0275	0.070
Medicago lupulina	Eurema proterpia	0.0001	0.570
Sanvitalia procumbens	Eurema proterpia	0.0018	0.362
Salvia longistyla	Ascia monuste	0.0001	0.503
Leonotis nepetifolia	Ascia monuste	0.007	0.087
Alternanthera sp.	Danaus plexippus	0.027	0.194
Chloris gayana	Smyrna blomfildia	0.001	0.598
Bromus carinatus	Smyrna blomfildia	0.003	0.201
Ixophorus unisetus	Smyrna blomfildia	0.003	0.194

Table 4: Correlation analysis between plant species and migratory butterfly species in the Medicago sativa crop.

its eggs [51,58]. We didn't find specimens of *A. curassavica* in our study site. The explanation may be that *D. plexippus* is a migratory butterfly the uses our agroecosystem as a feeding site, not as a reproduction site. The migratory butterflies *E. proterpia* and *S. blomfildia* visited more plant species; both have been reported in areas with crop fields and little remaining wooded sites, similar to our study site [59]. Therefore, the endemic butterfly *Chlosyne ehrenbergii* was positively associated with the plants *Leonotis nepetifolia* L.R.Br. (Lamiaceae) and *Alternanthera sp.* (Amaranthaceae).

Conclusion

The particular structure and high diversity of plants that exists in the agroecosystem under study played an important role in sustaining a high diversity of butterflies. However, we must consider that a larger-scale mosaic of different crops surrounds our study site, and that could be responsible for the diversity of the butterfly community, as mentioned elsewhere in the literature [5,11,43,48]. The high diversity of the native vegetation (including endemic species) and the positive correlation between butterflies and plant species, despite intensive crop management system, are probably the factors that generate most of the resources needed for a rich butterfly community that includes migratory and endemic species. These factors also create an effective network that allows for movement between habitats, serving as biological corridors [2,24,46]. Considering that many plant species found in crop field edges have ethnobotanical use, the results of this study suggest crop fields can provide refuge for butterflies as well as other benefits derived from the use of edge plants.

Acknowledgement

We thank the agroecosystem owners for allowing us to conduct this study. P Fascinetto-Zago and SP Rivas-Arancibia were financially supported by Vicerrectoría de Investigación y Estudios de Posgrado (VIEP) of Benemérita

Universidad Autónoma de Puebla, México (BUAP) to conduct this research.

References

- 1. Loos J, Dorresteijn I, Hanspach J, Fust P, Rakosy L, et al. (2014) Lowintensity agricultural landscapes in Transylvania support high butterfly diversity: implications for conservation. PloS ONE 9: e103256.
- 2. Fahrig L, Girard J, Duro D, Pasher J, Smith A, et al. (2015) Farmlands with smaller crop fields have higher within-field biodiversity. Agriculture, Ecosystems & Environment 200: 219-234.
- Fernandez AL, Sheaffer CC, Tautges NE, Putnam DH, Hunter M (2019) Alfalfa, Wildlife and the Environment. National Alfalfa and Forage Alliance. St. Paul: Minnesota.
- Saarinen K (2002) A comparison of butterfly communities along field margins under traditional and intensive management in SE Finland. Agriculture, Ecosystems & Environment 90: 59-65.
- Davros NM, Debinski DM, Reeder KF, Hohman WL (2006) Butterflies and continuous conservation reserve program filter strips: landscape considerations. Wildlife Society Bulletin 34: 936-943.
- 6. Kivinen S, Luoto M, Kuussaari M, Saarinen K (2007) Effects of land cover and climate on species richness of butterflies in boreal agricultural landscapes. Agriculture, Ecosystems & Environment 12: 453-460.
- Kuussaari M, Heliölä J, Luoto M, Pöyry J (2007) Determinants of local species richness of diurnal Lepidoptera in boreal agricultural landscapes. Agriculture, Ecosystems & Environment 122: 366-376.
- 8. Kleintjes NP, Locke C, Lee-Mäder E (2017) Assessing a farmland setaside conservation program for an endangered butterfly:USDA State Acres for Wildlife Enhancement for the Karner blue butterfly. Journal of Insect Conservation 21: 929–941.
- 9. Proctor M, Yeo P, Lack A (1996) The Natural History of Pollination. HarperCollins Publishers, Britain.
- 10. Grill A, Cleary DF (2003) Diversity patterns in butterfly communities of the Greek nature reserve Dadia. Biological Conservation 114: 427-436.
- 11. Clausen HD, Holbeck HB, Reddersen J (2001) Factors influencing abundance of butterflies and burnet moths in the uncultivated habitats of an organic farm in Denmark. Biological Conservation 98: 167-178.
- 12. Iwema D, Janes E, Rosenberger D (2016) Late Summer Butterfly Species Richness and Abundance in Bourbonnais Township, Northeastern Illinois.
- 13. Sparks TH, Parish T (1995) Factors affecting the abundance of butterflies in field boundaries in swavesey fens, Cambridgeshire, UK. Biological Conservation 73: 221-227.
- 14.Oostermeijer JGB, Van Swaay CAM (1998) The relationship between butterflies and environmental indicator values: a tool for conservation in a changing landscape. Biological Conservation 86: 271-280.
- 15. Abós F (2002) El pluricultivo y la presencia de márgenes mantienen la diversidad biológica en los agrosistemas. Ecología 16: 273-285.
- 16.Valtonen A, Saarinen K, Jantunen J (2007) Intersection reservations as habitats for meadow butterflies and diurnal moths: Guidelines for planning and management. Landscape and Urban Planning 79: 201-209.
- 17. Kitahara M, Sei K, Fujii K (2000) Patterns in the structure of grassland butterfly communities along a gradient of human disturbance: further analysis based on the generalist/specialist concept. Population Ecology 42: 135-144.
- 18. Baquero E, Moraza ML, Ariño HA, Jordana R (2011) Mariposas Diurnas de Pamplona. Ayuntamiento de Pamplona. España.
- Erhardt A (1985) Diurnal Lepidoptera: sensitive indicators of cultivated and abandoned grassland. Journal of Applied Ecology 22: 849-861.
- 20.Gerell R (1997) Management of roadside vegetation: effects on density and species diversity of butterflies in Scania, south Sweden. Entomologisk Tidskrift 118: 171-176.
- 21.Munguira ML, Thomas JA (1992) Use of road verges by butterfly and burnet populations, and the effect of roads on adult dispersal and

mortality. Journal of Applied Ecology 29: 316-329.

- 22.Wettstein W, Schmid B (1999) Conservation of arthropod diversity in montane wetlands: effect of altitude, habitat quality and habitat fragmentation on butterflies and grasshoppers. Journal of Applied Ecology 36: 363-373.
- 23. Pedroza SA, Ríos FJL, Torres MM, Cantú BJE, Piceno SC, et al. (2014) Eficiencia del agua de riego en la producción de maíz forrajero (*Zea mays* L.) y alfalfa (*Medigaco sativa*): impacto social y económico. Terra Latinoamericana 32: 231-239.
- 24. Giuliano D, Cardarelli E, Bogliani G (2018) Grass management intensity affects butterfly and orthopteran diversity on rice field Banks. Agriculture, Ecosystems & Environment 267: 147-155.
- 25. Fascinetto ZP (2015) Dinámica e Identificación de la Comunidad de Mariposas Diurnas (Lepidoptera: Rhopalocera) Asociadas a un Agroecosistema en Atlixco, Puebla. Unpublished thesis, Benemérita Universidad Autónoma de Puebla, México.
- 26. Villarreal H, Álvarez M, Córdoba S, Escobar F, Fagua G, et al. (2006) Manual de Métodos para el Desarrollo de Inventarios de Biodiversidad. Instituto de Investigaciones de Recursos Biológicos Alexander Von Humboldt. Colombia.
- 27. Magurran AE (1988) Diversity Indices and Species Abundance Models. Ecological Diversity and Its Measurement. Springer, Dordrecht.
- 28.Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Naturelles 44: 223-270.
- 29. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117-143.
- 30. Hammer O, Harper DAT, Ryan PD (2003) Past Palaeontological, Software version 1.18. Copyright Hammer and Harper.
- 31. Jiménez-Valverde A, Hortal J (2003) Las curvas de acumulación de especies y la necesidad de evaluar los inventarios biológicos. Revista Ibérica de Aracnología 8: 151-161.
- 32. Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from simples, version 8.0.
- 33.Gurevitch J, Chester Jr ST (1986) Analysis of repeated measures experiments. Ecology 67: 251-255.
- 34. Johnson DE (1998) Métodos Multivariados Aplicados al Análisis de Datos. International Thomson, México.
- 35.Kovach WL (2004) MVSP-A MultiVariate Statistical Package for Windows. Verion 3.13. Pentraeth, Wales: Kovach Computing Services.
- 36. Hintze J (2008) Software NCSS, PASS and GESS. Kaisville Utah: NCSS.
- 37. Albino C, Cervantes H, López M, Ríos-Casanova L, Lira R (2011) Patrones de diversidad y aspectos etnobotánicos de las plantas arvenses del valle de Tehuacán-Cuicatlán: el caso de San Rafael, municipio de Coxcatlán, Puebla. Revista Mexicana de Biodiversidad 82: 1005-1019.
- 38.Gámez A, De Gouveia M, Álvarez W, Pérez H, Mondragón A, et al. (2014) Flora arvense asociada a un agroecosistema tipo conuco en la comunidad de Santa Rosa de Ceiba Mocha en el estado Guárico. Bioagro 26: 177-182.
- 39. Hassannejad S, Ghafarbi SP (2014) Weed flora survey in alfalfa (*Medicago sativa* L.) fields of Shabestar (northwest of Iran). Archives of Agronomy and Soil Science 60: 971-991.
- 40. Delgado-Castillo JC (2012) Especies de Malezas Asociadas a Cultivos del Bajío de Guanajuato, México. Celaya, Guanajuato: Programa de Sanidad Vegetal, SAGARPA.
- 41. Mas M T, Verdú AMC (2005) Biodiversidad de la flora arvense en cultivos de mandarino según el manejo del suelo en las interfilas. Boletín de Sanidad Vegetal: Plagas 31: 231-242.
- 42. Sans FX, Armengot L, Bassa M, Blanco-Moreno JM, Caballero-López B, et al. (2013) La intensificación agrícola y la diversidad vegetal en los sistemas cerealistas de secano mediterráneos: implicaciones para la conservación. Revista Ecosistemas 22: 30-35.
- 43. Sawchik J, Dufrêne M, Lebrun P (2003) Estimation of habitat quality

based on plant community, and effects of isolation in a network of butterfly habitat patches. Acta Oecologica 24: 25-33.

- 44. Alignier A, Bretagnolle V, Petit S (2012) Spatial patterns of weeds along a gradient of landscape complexity. Basic and Applied Ecology 13: 328-337.
- 45.Ramírez-Hernández A, Micó E, Marcos-Garcia M, Brustel H, Galante E (2014) The "dehesa", a key ecosystem in maintaining the diversity of Mediterranean saproxylic insects (Coleoptera and Diptera: Syrphidae). Biodiversity and Conservation 23: 2069-2086.
- 46.Hernández-Mejía C, Llorente-Bousquets J, Vargas-Fernández I, Luis-Martínez A (2014) 2008: Las mariposas (Hesperioidea y Papilionoidea) de Malinalco, Estado de México. Revista Mexicana de Biodiversidad 79: 117-130.
- 47.Collinge SK, Prudic KL, Oliver JC (2003) Effects of local habitat characteristics and landscape context on grassland butterfly diversity. Conservation Biology 17: 178-187.
- 48. Davis JD, Hendrix SD, Debinski DM, Hemsley CJ (2008) Butterfly, bee and forb community composition and cross-taxon incongruence in tallgrass prairie fragments. Journal of Insect Conservation 12: 69-79.
- 49. González-Estébanez FJ, García-Tejero S, Mateo-Tomás P, Olea PP (2011) Effects of irrigation and landscape heterogeneity on butterfly diversity in Mediterranean farmlands. Agriculture, Ecosystems & Environment 144: 262-270.
- 50. Tabashnik BE (1983) Host range evolution: the shift from native legume hosts to alfalfa by the butterfly, *Colias philodice eriphyle*. Evolution 37: 150-162.
- 51. Graves SD, Shapiro AM (2003) Exotics as host plants of the California

butterfly fauna. Biological Conservation 110: 413-433.

- 52. Fernández-Hernández DM (2007) Butterflies of the agricultural experiment station of tropical roots and tubers, and Santa Ana, Camagüey, Cuba: an annotated list. Acta Zoológica Mexicana 23: 43-75.
- 53.Zambrano-González G, Ortiz-Ordóñez G (2009) Diversidad de Lepidópteros diurnos en tres localidades del corredor biológico y multicultural Munchique-Pinche, Cauca, Colombia. Bol Cient Mus Hist Nat 13: 241-224.
- 54. Tórrez M, Arendt W, Maes JM (2013) Comunidades de aves y lepidópteros diurnos y las relaciones entre ellas en bosque nuboso y cafetal de Finca Santa Maura, Jinotega. Encuentro 95: 60-79.
- 55. Pozo de la Tijera MC, Salas-Suárez N, Maya-Martínez A, Prado-Cuellar B (2005) Uso y Monitoreo de los Recursos Naturales en el Corredor Biológico Mesoamericano (Áreas Focales Xpujil-Zoh Laguna y Carrillo Puerto). Colegio de la Frontera Sur, Unidad Chetumal, CONABIO.
- 56. Santiago LJA, García BLE, Rojas JC, Perales RH (2006) Host selection behavior of *Leptophobia aripa* (Lepidoptera: Pieridae). Florida Entomologist 89: 127-134.
- 57.Hernández-Mejía C, Flores-Gallardo A, Llorente-Bousquets J (2015) Morfología del corion en Leptophobia (Lepidoptera: Pieridae) e importancia Taxonómica. Southwestern Entomologist 40: 351-368.
- 58.Iwashina T (2003) Flavonoid function and activity to plants and other organisms. Biological Sciences in Space 17: 24-44.
- 59. Marín L, León-Cortés JL, Stefanescu C (2009) The effect of an agropasture landscape on diversity and migration patterns of frugivorous butterflies in Chiapas, Mexico. Biodiversity and Conservation 18: 919-934.

Citation: Fascinetto-Zago P, Rivas-Arancibia SP, Andrés-Hernández AR, Olmos-Santiago N et al. (2024) Boundaries of Alfalfa Field and their Function as Refuge for Butterfly (Lepidoptera: Rhopalocera) Communities. J Appl Microb Res. Vol: 7 Issu: 1 (06-15).