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Abstract
Individual-based model (IBM) has been used to simulate and to design 
control strategies for dynamic systems that are subject to stochasticity 
and heterogeneity, such as infectious diseases. In the IBM, an individual 
is represented by a set of specific characteristics that may change 
dynamically over time. This feature allows a more realistic analysis of 
the spread of an epidemic. This paper presents a literature survey of 
IBM applied to biomedical and epidemiology research. The main goal 
is to present existing techniques, advantages and future perspectives in 
the development of the model. We evaluated 89 articles, which mostly 
analyze interventions aimed at endemic infections. In addition to the 
review, an overview of IBM is presented as an alternative to complement 
or replace compartmental models, such as the SIR (Susceptible-
Infected-Recovered) model. Numerical simulations also illustrate the 
capabilities of IBM, as well as some limitations regarding the effects of 
discretization. We show that similar side-effects of discretization scheme 
for compartmental models may also occur in IBM, which requires careful 
attention.

Keywords: Individual-based model; Epidemiology; Infectious 
diseases; Biomedical research.

Introduction
For centuries, humanity has been marked by adversity in the pursuit of 
survival. Wars, famine, the climate beyond predators are some of main 
challenges for humanity’s progress and survival. However, no other 
factor brings so much fear to society as epidemics [1]. The black death 
of the fourteenth century and the influenza pandemic that occurred 
during First World War were responsible for at least 100 million deaths 
[2,3]. Nowadays, acquired immune deficiency syndrome (AIDS) has 
been universally recognized by its significant impact on mortality rates, 
especially in developing countries, threatening global health. In 2016, an 
estimated 36.7 million people were living with AIDS [4], were 19.4 million 
are in East and Southern Africa. This is an example of the disastrous effect 
of infectious diseases. Although the application of public health polices 
has controlled some main epidemic threats, particularly in developing 
countries, policies to limit their occurrence have been insufficient [5,6]. 
The course of the epidemic is determined by the social aspects and the 
initiatives implemented to contain it.

Therefore, understanding the epidemiological process and the 
pathogenesis of diseases has became increasingly relevant [7]. The 
study of the dynamics of infectious diseases, as well as methods that 
may support the development of strategies for prevention and control 
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of diseases through mathematical models, have been 
widely developed. Mathematical models provide a powerful 
toolkit in the process to control and prevent the emergence, 
expansion or resurgence of pathogens, since the availability 
of options requires continuous evaluation using different 
methods. Also known as mathematical epidemiology, this 
tool is one of the most important scientific activities to help 
in the eradication of diseases [8].

Among many mathematical modeling strategies, one of the 
most studied is the compartmental technique, such as the SIR 
model (Susceptible-Infected-Recovered) [9]. The SIR model 
has been applied in many areas [10]. Using a time series SIR 
model, the authors in [11] have found that the initial phase 
of the epidemic is stochastic. Stone et al. [12] and Aron 
and Schwartz [13] obtained period-doubling bifurcation 
and chaos in epidemic models. Nowak et al. [14] indicated 
that mathematical models are used for understanding 
phenomena like AIDS pathogenesis. There are many papers 
that apply control theory in several compartmental models. 
In general, in the theory of epidemic dynamical models 
there are continuous-time models described by differential 
equations, and the discrete-time models described by 
difference equations. However, differential (difference) 
equations are not adequate to model a system in which 
the individuals present important differences [15]. This 
behavior is due to the fragility of compartmental models 
assuming that the distribution of individuals is spatially 
and temporally homogeneous. Therefore, one of the most 
prominent strategies is to deal with an individual as a single 
entity, that is, a heterogeneous mixture of individuals. This is 
a feature of the Individual-Based Model (IBM) [16].

Individual-Based model (IBM) has been used to analyze 
epidemiological mathematical models in a more realistically 
way. The IBM deals with many entities, spatial scales, 
heterogeneities, and stochastic events, it is necessarily more 
complex than classical models [17]. Thus, IBM’s purpose is to 
model infectious diseases in populations in which individuals 
can be divided into epidemiological states. This framework 
is intended as an alternative to replace or complement 
compartment models, such as SIR [5]. More recently, a 
considerable number of works have been developed to 
model and control disease around the world using IBM as 
a tool, strategies such as vaccination programs or isolation 
programs, such as School closure, are applied to mitigate the 
effects of a pandemic. Due to its excellent results, vaccination 
is still considered one of the most effective strategies to 
prevent infectious diseases and their consequences [18]. 
Most often, the IBM simulates experiments in a computational 
environment, considering individual characteristics and the 
environment in which they are, i.e. interactions between 
individuals [19]. The implementation of such models 
is already facilitated by software platforms specifically 
designed to implement models based on individuals [20,21]. 
Future perspectives for the IBM can be assembled from a 
tried and tested construction block toolkit representing, for 
example, energy budgeting, habitat selection, and feature 
composition [22]. In this paper, a review section investigates 
the frequency and methods of such applications in IBM. The 

focus of this survey is on IBM applied to infectious diseases 
in humans and their perspectives [23,24]. In this systematic 
review, we summarized and discussed IBM applications 
and terminology in different epidemiological disciplines, 
published between 1997 and 2017. The characteristics 
of the model were analyzed and discussed, such as the 
implementation of social mixtures, demographic evolution 
over time, modeling platforms for IBM’s, and such as 
strategies to contain an epidemic. In addition to the literature 
review, three simulation experiments will be presented. First, 
an example of IBM is described. Second, IBM is adjusted to 
have an average behavior corresponding to a SIR model. In 
the third experiment, the limitations of the models related to 
the effects of discretization and the generation of chaos are 
presented.

Material and Methods
Literature Review
A systematic review of studies using IBM applied to the 
transmission of infectious diseases in humans has been 
conducted. The strategy adopted for review research is to use 
IBM as the comprehensive term for individual-level models, 
also observed as agent-based model, cellular automata 
(CA), and so on. The definition based on the literature for 
Individual-Based Model is: “A computational tool capable of 
simulating individuals that interact with each other, where 
individuals or agents have unique attributes that change 
throughout the life cycle” [21,22].

Search: This is a literature review with search frequency 
from 1997 to the present. The search engines were SCOPUS, 
IEEE and WEB OF SCIENCE. Based on the listed definitions 
and exploratory searches, the following search query was 
used: “(“individual based model”) AND (biomedic* OR 
“infectious disease” OR epidem*)”. With date and descriptor 
restrictions, initially there were 226 articles in the Web of 
Science database, where the Topic search restriction was 
used meaning search by title, abstracts, and keywords in 
all databases. For the Scopus database, 233 studies were 
found by searching by title, abstracts and keywords in all 
databases. For the IEEE database, 673 studies were found in 
all databases. Original research papers were included using 
an IBM focused on the transmission of infectious diseases 
in humans. That is, reviews and studies related to animal 
research, ecology and molecular biology were excluded. 
All abstracts of these papers were read and evaluated 
for inclusion or exclusion in the present review. After the 
detailed reading of the abstracts, application of the inclusion 
and exclusion criteria, there were 31 papers in the Web of 
Science, 55 in Scopus and 20 in the IEEE. From a total of 
1132 studies, 106 papers were selected. After checking for 
some duplication, the final sample of the present review 
is composed of 88 articles. The search process is shown in 
Figure 1.

To the best of authors’ knowledge, we could not find a 
survey of IBM with focus on biomedical and epidemiological 
research. This is one of the main objectives of this paper. 
Additionally, as it has been already mentioned, we have 
provided some general mathematical description of the IBM 
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as well some concerns regarding the effects of discretization 
schemes, which are more usually investigated for differential 
equations, but they may also bring some inconsistent results 
for the IBM.

Model classification: The articles were classified in three 
broad areas of approach:

Topic: Type of pathogenesis.

•	 Disease: The disease addressed in Article;

•	 Type: Forms of contagion;

Modeling purpose: The proposal presented.

•	 Methods: Description of new approaches to IBM 
research, introducing modeling concepts, performance 
enhancements, simulation techniques, or mathematical 
techniques;

•	 Dynamics: Using methods to understand the dynamics of 
the transmission and elaborate on the best assumptions 
of the model a viable solution;

•	 Interventions: Evaluation intervention measures to 
inform policy makers and organizations, based on 
knowledge of the dynamics of transmission and economic 
analysis;

Control strategy: Intervention strategy used.

•	 Vaccination;

•	 Antivirals, drugs;

•	 Screening;

•	 Non-pharmaceutical intervention (NPI): social distancing, 
closure of schools, improvement of living standards and 
urban mobility.

Full-text trace: To extract features and applications from the 
model, a full-text exam was done for the selected articles as 
a function of the human application on infectious diseases. 
Some studies have been found in this context on Influenza, 
Hepatitis A, Hepatitis B, Hepatitis C, HIV, HPV, Measles, 
Polio, Ebola, Smallpox, Chickenpox, SARS, Respiratory 
Syncytial Virus, Tuberculosis, Bubonic Plague, Pertussis, 
Lepra, Gonorrhea, Chagas Disease, Schistosoma, Dengue, 
Chikungunya, Malaria and Varicella Zoster. For each full-text 
article, we list the topic, the purpose of modeling and control 
strategy that have been used, employing IBM as a tool.

Bibliometric indicators: Table 1 presents schematically 
the results found giving an overview of the different themes, 
modeling purposes and study characteristics. The result of 
the review consists of 86 articles and the years of publication 
ranged from 1997 to 2018. The Search Process was 
explained in Section 2.1.1. during the selection of the articles 
it was possible to observe a change in the applications used 

Number  of articles identified: 1132
IEEE: 673
Web of Science: 226
Scopur: 233

.

.

.

Number of articles excluded after
reading the abstracts and applying the 

exclusion criteria: 1026

Selected studies for evaluation: 106

Number of discarding duplicates: 18

Final Sample: 88

Figure 1: Search process and collection of articles. 
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in IBM, which explains the selection of more recent works, 
this change occurred from studies focused on methodology 
papers for applications and purposes related to intervention. 
Methodological papers, not applied to a specified close-
contact infection, mostly describe the conceptual usage of an 
IBM to simulate heterogeneous disease dynamics. Among the 
selected papers, 2015 has the largest number of publications 
(17), one can consider this fact in front of the Ebola in 2015 
[25-30]. From 1997 to 2003, no publication was found from 
the delineated search process.

Most papers in our selection are on HIV - human 
immunodeficiency virus (15.90%), closely followed by 
influenza (14.77%). Articles about influenza, according to 
the selection, use vaccination, isolation or school closure 
programs to control seasonal or pandemic influenza 
outbreaks [31-43]. On the other hand, the majority of the 
works of general close-contact diseases were written with 
the intention of describing the transmission dynamics or the 
methodology of mathematical models [44-53]. As previously 
mentioned, the applications of the IBM have migrated to a 
certain extent, from the use of methodological works for 
applications aimed at the intervention of infectious diseases. 
This is observed in the number of works related to human 
immunodeficiency (HIV) or sexual transmission [54-69], 
tuberculosis [70-75], dengue [76-80], Hepatitis C [81-86] 
and Ebola [25-30] in this review.

For vector-borne disease models, Dengue is the most 
studied subject. Generally, the studies try to understand 
the pathogenicity, transmission dynamics and even to 
create computational tools for the prevention and control 
of Dengue. Some papers have used computer platforms 
using mathematical software such as MATLAB [40,65]. In 
addition, software’s such as NetLogo [52,74], AnyLogic [82], 
DengueME [78,79], HexSim [87] and NOVA [29] were used as 
explicit modeling platforms (Table 1). 

Works published with IBM focused on infectious diseases 
are in constant ascendancy. In this review, most of the 
articles included were on topics focused on HIV, influenza or 
unspecified Close-contact, but this does not restrict studies 
on IBM. Studies of diseases transmitted by vectors, parasites 
[88,89] or bacteria [90-95] are also being approached and 
with a perspective of increasing work for the next years. 
Vector-borne diseases such as dengue [76-80], malaria 
[96,97] and chikungunya [98] are being improved, given the 
increasing geographic expansion of their vectors, generating 
future research perspectives.

Many papers use socioeconomic and biomedical databases 
to make predictions with mathematical models, along with 
interventions such as isolation and vaccination, to predict 
pandemic outbreaks, taking health care into account, and 
informing authorities of efficiency and efforts to end the 

Topic
Count

Modeling Purpose Control Strategy

Disease Type Methods Dynamics Interventions Vaccine NPI Drugs Screening

Unspecified Close-contact General 11 9 6 2 1 10 - -
Unspecified STI General 1 - 1 - - 1 - -
Chickenpox Viral 1 - - 1 - 1 - -
Ebola Viral 6 4 4 2 1 6 1 -
Hepatitis A Viral 1 - - 1 1 1 - -
Hepatitis B Viral 1 1 - - - 1 - -
Hepatitis C Viral 6 3 - 4 1 4 1 1
HIV Viral 14 5 4 7 - 13 1 3
HIV+Hepatitis C Viral 1 - 1 - - - 1 -
HPV Viral 3 - 2 1 3 - - 1
Influenza Viral 13 8 3 6 2 10 2 -
Measles Viral 1 1 1 - 1 - - -
Polio Viral 2 2 - - 2 - - -
Respiratory syncytial virus Viral 1 - - 1 1 - - -
SARS Viral 1 1 - - - 1 - -
Smallpox Viral 2 - - 2 2 2 - -
Varicella Zoster Viral 1 1 - - 1 - - -
Bubonic plague Bacterial 1 - 1 - - 1 - -
Gonorrhea Bacterial 1 1 - - - 1 - -
Lepra Bacterial 3 - 1 3 - 1 2 -
Pertussis Bacterial 1 1 - 1 1 - - -
Tuberculose Bacterial 6 2 3 1 - 5 - -
Chagas disease Parasitic 1 - 1 - - 1 - -
Schistosoma Parasitic 1 1 1 - - 1 - -
Chikungunya Vector-borne 1 - 1 - - 1 - -
Dengue Vector-borne 5 3 5 - 1 4 - -

Malaria Vector-borne 2 - 1 1 - 2 - -
TOTAL 88 43 36 33 18 67 8 5

Table 1: Characteristics of IBM studies applied to humans in the transmission of infectious diseases published from 1997 to 2018. Intervention studies may also 
describe dynamics and methods, as some papers may describe more than one strategy. HIV: human immunodeficiency virus, HPV: human papillomavirus, STI: 
sexually transmitted infection, SARS: Severe acute respiratory syndrome.
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pandemic. Few studies have been found on Chickenpox 
[99], Varicella [100], Hepatitis A [101], Hepatitis B [102], 
HPV [103-105], Measles [106], Polio [107,108], Respiratory 
Virus [109], SARS [110] and Smallpox [111,112], which do 
not mean that these pathogens are not being studied by 
other researchers because their socioeconomic aspects are 
extreme importance. Future research, using IBM, should 
address these and other topics more frequently, bringing 
some aspects that can influence the spread of diseases such 
as social awareness, climate change and global mobility.

Mathematical models

Compartment models: The SIR model (Susceptible-
Infected-Recovered) is a compartmental model formulated 
in terms of differential equations, to study the consequences 
of a contagious disease that spreads rapidly in a population. 
The three compartments considered are:

•	Susceptible: individuals who are not infected but may come 
to be.

•	Infected: individuals who are with the disease and are able 
to pass it on to other individuals.

•	Recovered: individuals who are recovered and immune to 
contagion. Immunity in this case consists of an individual 
with permanent immunity acquired by the infection.

There are other derivations of the SIR model presented to 
describe infectious diseases, following the same rationale. In 
order to obtain the set of equations that represent the SIR 
model, some considerations are made:

 Individuals are homogeneously distributed within a 
population.

 The population is considered constant, d = µ.

 The number of individuals in the infected compartment 
increases at a rate that is proportional to the number 
of individuals in the infecting class and to the number 
of individuals in the susceptible compartment, 
mathematically represented by the portion β(S)I(t).

 The rate at which infected individuals are transferred 
into the class of the recovered is proportional to the 
number of infected. This fact is modeled by γI(t). Thus, at 
an instant of time t a population is characterized by:

( ) ( ) ( )N S t I t R t= + +                                                                  (1) 

 Where, N is the total number of individuals in a population 
at instant t.

 Therefore, the SIR model can be written as the set of 
differential equations: 

                                                             ( )

( )

( )

  ,            0 0,

  ,             0 0,

  ,             0 0,

dS IS
µN µS S S

dt N
dI IS

I µI I I
dt N
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= − − = ≥

= − − = ≥

= − = ≥

                               
                  (2)

It is often set s(t) = S(t) = N, i(t) = I(t) = N and r(t) = R(t) = N, 

as being, respectively, the proportion of susceptible, infected 
and recovered in a population of constant size N. β is the 
infection rate, µ is the death rate and γ is the recovered rate. 
Dividing the equations into (2) by N:

     
0

0

,         0

,  0.

ds µ µs is s
dt
di is i µi i
dt

β

β γ

= − − ≥

= − − ≥
                                          (3) 

In this way, the population size is normalized, that is, N = 1, 
and the class of recovered can be determined by: r(t) = 1-s(t)-
i(t) 

The fixed points of the Equations in (3) are obtained from:

( )

( )

, 0

, 0

ds f s i
dt
di g s i
dt

= =

= =
                             (4)

 Through Equation (4), the following fixed points are 
obtained for the SIR model:

( ) ( )

( )
1 1 1

2 2 2

, 0,1

, ,

f f

f f

P s i

µ µ µP s i
µ

γ
β γ β

=

 +
= − + 

                                         (5)

The analysis of the dynamics of the SIR model given by [2], 
allows two states of equilibrium (P1 and P2) to determine. The 
fixed point (P1), the population is free of infection and the 
fixed point P2, the population of infected goes to an endemic 
balance. Endemic diseases are the result of long-term 
equilibrium between agent and host. There is a concern to 
adapt the parameters of the SIR model, so that the prediction 
of the evolution of the epidemic and simulation of the spread 
of the disease are satisfactory, due to the many uncertainties 
in the problem.

Applying the forward Euler scheme to model (3) can be 
obtained the following discrete-time SIR epidemic model

( )
( )

1  

1

,

.
n n n n n

n n n n n n

S S h µ µS S I

I I h I S I µI

β

β γ
+

+

= + − −

= + − −
                                                         (6)

where h is the step size, µ, β and γ are defined as model (2).

Individual-Based Model (IBM): IBM’s are important for 
both theory and application, because they allow researchers 
to consider aspects generally overlooked in analytical models 
such as, interaction between individuals, local interactions, 
complete life cycles, and so on. However, they have their 
weaknesses, the IBMs have their structure more complex 
than compartmental models, so they are more difficult to 
implement, analyze and understand. For this reason, Grimm 
and colleagues have developed a standard protocol for 
describing IBM. The protocol is composed of three blocks: 
overview, design concepts and details. The Overview block 
provides the general purpose and structure of the model. 
The Design concept block describes the general concepts 
underlying the design of the model. Finally, the Details block 
displays information that was omitted from the overview, 
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such as initialization, input, and sub models. Background 
information in the ODD protocol can be obtained from 
[19,24]. An IBM allows to emulate simulation experiences 
in a computational environment taking into account the 
characteristics and interaction of each individual. In this way, 
aspects that are generally ignored by other models can be 
considered making the system more realistic. The purpose 
of IBM is to model infectious diseases, for this work is 
considered an equivalence between IBM and SIR, therefore 
IBM complements the SIR model, considering also those 
individuals can be divided into epidemiological states.

In the mathematical formulation considered for the IBM, the 
individual can be represented by

, ,1, ,2, , ,   ,n t n t n t n m tI C C C = …                                                   (7)

where n  is a sequential number that identifies an 
individual, m is the number of features, t is the instant that 
the individual presents a specific set of characteristics and 
Cn,m,t is a characteristic considered for the individual. The 
first characteristic is its epidemiological status, which may 
be susceptible, infected, recovered. Other characteristics 
may be age, duration of infection, sex, spatial location or any 
other characteristics of the individual considered relevant. 
It is important to highlight that the characteristics Cn,m,t in 
(7) may change with time. A collection of individuals can be 
represented as a population:

1, 2, 3, ,   ,
T

t t t t m tP I I I I = …                                                        (8)

where Im,t is an individual at time t and   m x nP∈  is a matrix. 
Probabilistic distributions are used for an individual to 
verify when a state transition occurs. After the Im,t individuals 
are evaluated, the simulation time is incremented by ∆t. 
This formulation of the model is quite generic, allowing to 
incorporate several characteristics of the individuals. The 
employed model has the following characteristics:

•	C1∈[0,1,2]. That is, the individual may be in the susceptible, 
infected and retrieved state respectively.

•	C2 is the age of an individual, which receives an addition of 
∆t in each transition time.

•	C3 is the maximum age at which the individual will live. 
At the moment of the birth of the individual this value is 
obtained by:

( )3 uC µlog a= −                                                                                (9)

where µ is the life expectancy of the population and au is 
a random variance with uniform distribution, contained 
between 0 and 1.

•	C4 is the time that the individual is in the infecting state.

•	C5 is the maximum time the individual is in the infecting 
state. Like the C3 characteristic, the maximum time the 
individual becomes infected is obtained a priori by:

( )5 uC log aγ= −                                                                            (10)

where γ is the infecting period.

Susceptible and recovered individuals do not present 

characteristics C4 and C5. In this case they are zero. The 
number of susceptible, infected and recovered individuals 
at each instant t of the population is denoted by St, It and Rt, 
respectively. 

Figure 2 shows an IBM flowchart. The characteristics of 
the initial population are determined randomly, given the 
probability distributions of the state variables. 

Results
This section presents the results of simulations experiments 
of IBM and SIR model.

Developing an IBM for infectious diseases: In order to 
show how IBM works and how it can be used as an alternative 
to the SIR model let us consider a hypothetical disease. 
Figure 3 shows IBM used to simulate a hypothetical disease 
that exhibits three epidemiological states: susceptible, 
infected and recovered. The parameters that have been used 
are Δt = 0.1, γ = 1/3, µ = 1/60, α = 1/60 and β = 0.25. The 
initial conditions are N (0) = 1000, S (0) = 900, I (0) = 10, and 
R (0) = 90. Figure 3 presents the results obtained from the 
IBM simulation. One can see that infected individuals tend to 
zero, which means that the epidemic tends to be eradicated. 
For this set of dynamic parameters IBM was simulated only 
once (Figure 3). 

The same dynamic parameters have been considered to 
simulate the discretized SIR model. Figure 4 shows this 
result. It is possible to observe that the same behavior that 

 

Initial Parameters
Initial Population

t = 0

t=t+  t Yes
Endt > tf

No

Individuals die if
P(:,2) > P(:,3)

New Individuals born Transition to 0

Individuals recover if
P(:,4) > P(:,5) Transition to 2

Individual n=1

Yes n=n+1
n >N(t)

No

Yes No

Susceptible Infection

Yes

Transition to 1

No

Figure 2. Flowchart of IBM for an epidemiological system, which presents 
three classes: susceptible, infected and recovered. Source: [5].
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Figure 3. Simulation of IBM, showing Susceptible, Infected and Recovered individuals. Δt = 0.1, γ = 1/3, µ = 1/60, α = 1/60 and β = 0.25. The initial conditions 
are N (0) = 1000, S (0) = 900, I (0) = 10, and R (0) = 90. 

0 50 100 150 200 250 300
0

500
1000

Time

Su
sc

ep
tib

le SIR Model

0 50 100 150 200 250 300
0

500
1000

Time

In
fe

ct
ed

0 50 100 150 200 250 300
0

500
1000

Time

Re
co

ve
re

d

Figure 4: Simulation of SIR model, showing Susceptible, Infected and Recovered individuals. Δt = 0.1, γ = 1/3, µ = 1/60, α = 1/60 and β = 0.25. The initial 
conditions are N (0) = 1000, S (0) = 900, I (0) = 10, and R (0) = 90. 
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have been seen in Figure 3 for IBM, occurs for this model, 
noting that infected individuals tend to zero, the epidemic 
tends to end (Figure 4). 

Next step is check for equivalence between the SIR model 
and IBM. To consolidate this result the Monte Carlo method 
have been used, where the IBM was simulated 100 times. 
Figure 5 depicts the Monte Carlo simulation for IBM, we 
notice a jump at t  = 230, this is due to the stochasticity of the 
model (Figure 5). 

To validate the equivalence between the SIR and IBM models 
the mean and standard deviation were calculated for each 
time value, as shown in Figure 6. It is possible to notice that 
IBM presents an average behavior that approaches the SIR 
model, represented in red. In this plot, it is presented only the 
number of infected individuals. Similar results are obtained 
for susceptible and recovered individuals.

It is important to show that by changing the integration 
step of the IBM model it loses stability, Figures 7-9 shows 
the simulated IBM model with the following parameters γ = 
1/3, µ = 1/60, α = 1/60 and β = 0.25. The initial conditions 
are, N (0) = 1000, S (0) = 900, I (0) = 10, and R (0) = 90. The 
integration steps used for the simulations were Δt = 0.1, Δt = 
0.5 and Δt = 1 (Figure 6-9).

For integration steps of Δt = 0.5 and Δt = 1, the IBM loses 
stability. The dynamic behavior of the model changes. The 
same behavior can be observed for compartmental models, 
for this case the discrete SIR model is studied, because its 

dynamic behavior is very plentiful and more complex than 
model SIR in continuous time [7]. That said, Figure 10 shows 
the bifurcation diagram for the SIR model. The following 
parameters for the discrete SIR were used µ = 0,2 γ = 0.15 
and β = 0.12 The initial conditions were S (0) = 8 and I (0) = 
5. These parameters were taken from [7]. As h varies a Flip 
bifurcation occurs, so it is easy to notice that there is chaos 
for this range of values (Figure 10). 

Conclusion
This article presented a literature review along with 
simulations of the SIR and IBM models for epidemiological 
systems. In the literature review, the selected papers were 
mostly on applications of diseases in humans. A total of 
86 papers were selected, most of which addressed IBM 
applications on infectious diseases in humans. Some 
papers provided solutions for modeling and application 
of methods to prevent and control diseases using IBM as a 
computational tool. Examples using IBM have been shown 
in this paper, where the approach used of IBM allowed 
to consider specific characteristics of the individuals, 
considering them heterogeneous. The focus of this work was 
the analysis of phenomena associated with the models, both 
for continuous and discretized compartmental models and 
for stochastic models such as IBM. For IBM, some simulation 
experiments were tested, where the epidemiological system 
presents three classes: susceptible, infected and recovered. 
The population is considered constant and, at some point, 
integration steps are changed. The results show that IBM 
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Figure 5: Monte Carlo simulation (100 runs). The parameters used Δt = 0.1, γ = 1/3, µ = 1/60, α = 1/60 and β = 0.25. The initial conditions are N (0) = 1000, 
S (0) = 900, I (0) = 10, and R (0) = 90. and R (0) = 90. 
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parameters used Δt = 0.1, γ = 1/3, µ = 1/60, α = 1/60 and β = 0.25.  The initial conditions are N (0) = 1000, S (0) = 900, I (0) = 10, and R (0) = 90.
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Figure 7: Simulation of IBM with integration step Δt = 0.1.

can model an epidemic leading to eradication, however, 
the model shows a loss of stability when the integration 
step is changed. A similar phenomenon occurs for the 
discrete SIR model, where for a specific set of values the 
model presents chaotic characteristics, which can be 
observed through the Bifurcation diagram. To consolidate 

these results it was necessary to prove the equivalence 
between the models, where IBM has an average behavior 
that approaches the SIR model. In addition, the number of 
infected individuals reaches an endemic value, which is 
expected for this simulation. Therefore, is important to note 
that, like deterministic models, stochastic models also have 



www.innovationinfo.org

20ISSN: 2581-7388

0 100 200 300 400 500 600
600
800

1000

Time

Su
sc

ep
tib

le Individual-Based Model

0 100 200 300 400 500 600
0

50
100

Time

In
fe

ct
ed

0 100 200 300 400 500 600
0

500

Time

Re
co

ve
re

d

Figure 8: Simulation of IBM with integration step Δt = 0.5.
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Figure 9: Simulation of IBM with integration step Δt = 0.1.
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Figure 10: Discrete SIR model. The Flip bifurcation of I (n) with A = µ × N = 4, with µ = 0.2, γ = 0.15 and β = 0.12. h ϵ [2, 2.85] and initial values (S0, I0) = 
(8, 5). Source: [7].

physical and structural limitations, i.e., chaos and loss of 
stability, leaving researchers alert to the use of these models 
even if they present reasonable results. Future directions of 
the IBM research on infectious diseases should be focused 
on the development of techniques to combat epidemics. In 
terms of application, the results presented here suggest that 
simulations using mathematical models, especially IBM, may 
be useful for evaluating methodologies for the eradication of 
several types of epidemics, however their limitations must 
be considered.
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